270 research outputs found
Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery
Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data
MAMUD : contribution of HR satellite imagery to a better monitoring, modeling and understanding of urban dynamics
In this treatise the discussion of a methodology and results of semi-automatic city DSM extrac-tion from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, partly because of the steep changes in elevation caused by buildings and urban features. To make DSM extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research will concentrate, in first phase on the development of methods to optimize the extraction of photogrammetric products from the bundled Ikonos triplet. Optimal methods need to be found to improve the radiometry and geometry of the imagery, to improve the semi-automatically derivation of DSM’s and to improve the postprocessing of the products. Secondly we will also investigate the possibilities of creating stereo models out of images from the same sensor taken on a different date, e.g. one image of the stereo pair combined with the third image. Finally the photogrammetric products derived from the Ikonos stereo pair as well as the products created out of the triplet and the constructed stereo models will be investigated by comparison with a 3D reference. This evaluation should show the increase of accuracy when multi-imagery is used instead of stereo pairs
Evaluation of pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment with landsat thematic mapper
In this study several pre/post-fire differenced spectral indices for assessing burn severity in a Mediterranean environment are evaluated. GeoCBI (Geo Composite Burn Index) field data of burn severity were correlated with remotely sensed measures, based on the NBR (Normalized Burn Ratio), the NDMI (Normalized Difference Moisture Index) and the NDVI (Normalized Difference Vegetation Index). In addition, the strength of the correlation was evaluated for specific fuel types and the influence of the regression model type is pointed out. The NBR was the best remotely sensed index for assessing burn severity, followed by the NDMI and the NDVI. For this case study of the 2007 Peloponnese fires, results show that the GeoCBI-dNBR (differenced NBR) approach yields a moderate-high R(2) = 0.65. Absolute indices outperformed their relative equivalents, which accounted for pre-fire vegetation state. The GeoCBI-dNBR relationship was stronger for forested ecotypes than for shrub lands. The relationship between the field data and the dNBR and dNDMI (differenced NDMI) was nonlinear, while the GeoCBI-dNDVI (differenced NDVI) relationship appeared linear
Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study
A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified
- …