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Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to 25 

assess the post-fire vegetation recovery three years after the large 2007 Peloponnese (Greece) 26 

wildfires. Post-fire recovery landscapes typically are mixed vegetation-substrate environments 27 

which makes Spectral Mixture Analysis (SMA) a very effective tool to derive fractional 28 

vegetation cover maps. Using a combination of field and simulation techniques this study 29 

aimed to account for the impact of background brightness variability on SMA model 30 

performance. The field data consisted out of a spectral library of in situ measured reflectance 31 

signals of vegetation and substrate and 78 line transect plots. In addition, a Landsat Thematic 32 

Mapper (TM) scene was employed in the study. A simple SMA, in which each constituting 33 

terrain feature is represented by its mean spectral signature, a multiple endmember SMA 34 

(MESMA) and a segmented SMA, which accounts for soil brightness variations by forcing 35 

the substrate endmember choice based on ancillary data (lithological map), were applied. In 36 

the study area two main spectrally different lithological units were present: relatively bright 37 

limestone and relatively dark flysch (sand-siltstone). Although the simple SMA model 38 

resulted in reasonable regression fits for the flysch and limestones subsets separately 39 

(coefficient of determination R
2 

of respectively 0.67 and 0.72 between field and TM data), the 40 

performance of the regression model on the pooled dataset was considerably weaker (R
2
 = 41 

0.65). Moreover, the regression lines significantly diverged among the different subsets 42 

leading to systematic over-or underestimations of the vegetative fraction depending on the 43 

substrate type. MESMA did not solve the endmember variability issue. The MESMA model 44 

did not manage to select the proper substrate spectrum on a reliable basis due to the lack of 45 

shape differences between the flysch and limestone spectra,. The segmented SMA model 46 

which accounts for soil brightness variations minimized the variability problems. Compared 47 

to the simple SMA and MESMA models, the segmented SMA resulted in a higher overall 48 

correlation (R
2
 = 0.70), its regression slope and intercept were more similar among the 49 



different substrate types and its resulting regression lines more closely resembled the expected 50 

one-one line. This paper demonstrates the improvement of a segmented approach in 51 

accounting for soil brightness variations in estimating vegetative cover using SMA. However, 52 

further research is required to evaluate the model's performance for other soil types, with 53 

other image data and at different post-fire timings. 54 

Keywords: fire; vegetation recovery; Landsat Thematic Mapper; Spectral Mixture Analysis; 55 

MESMA; segmentation 56 

1 Introduction 57 

Wildfires are a determining disturbance in almost all terrestrial ecosystems (Dwyer et al., 58 

1999; Bond and Keeley, 2005; Riaño et al., 2007). They partially or completely consume the 59 

protective vegetation and organic litter cover, which can destabilize surface soils on steep 60 

slopes (Shakesby and Doerr, 2006). Shortly after the fire, infiltration significantly decreases 61 

whereas surface erosion increases due the bares soil's elevated exposure to raindrop impact 62 

and surface run-off. What is more, biomass burning instigates abrupt changes in ecological 63 

processes and carbon fluxes (Epting and Verbyla, 2005; Amiro et al., 2006). After the fire 64 

event a more gradual regeneration process is generally initiated (Viedma et al., 1997; van 65 

Leeuwen, 2008). Post-fire recovery rates depend on fire severity (Díaz-Delgado et al., 2003), 66 

soil properties (Bisson et al., 2008), post-fire meteorological conditions (Henry and Hope, 67 

1998; van Leeuwen et al., 2010) and ecotype (Viedma et al., 1998; Veraverbeke 2010a, 2011, 68 

Lhermitte et al. 2011). In fire-adapted sclerophyllous shrub lands, for example, recovery only 69 

takes a few years (Viedma et al., 1997; Pausas and Verdu, 2005) whereas in boreal forests 70 

recovery lasts several decades (Nepstad et al., 1999). The carbon sequestration by 71 

regenerating plants partly compensates the fire's emissions and thus importantly influences the 72 

net changes caused by fire (Amiro et al., 2006; Randerson et al., 2006). Vegetation recovery is 73 

thus the main factor in limiting the damage of fire and its consequences. The assessment of 74 



post-fire vegetation regeneration is of crucial importance for the understanding of the 75 

environmental impacts of fire and to support sustainable rangeland management after fire. In 76 

comparison with labor-intensive field work, the synoptic nature of remote sensing systems 77 

offers a time-and cost-effective means to fulfill this duty. 78 

The remote sensing of post-fire vegetation recovery has a long tradition in the use of the 79 

Normalized Difference Vegetation Index (NDVI) (a.o. Viedma et al., 1997; Díaz-Delgado et 80 

al., 2003; van Leeuwen 2008; Clemente et al., 2009; Lhermitte et al., 2011) because of the 81 

well established relationship between the index and above-ground biomass in a wide range of 82 

ecosystems (Carlson and Ripley, 1997; Henry and Hope, 1998; Cuevas-González et al., 83 

2009). At moderate resolution scale Landsat data typically are the standard of choice. A 84 

plethora of studies demonstrated the utility of Landsat NDVI to assess post-fire vegetation 85 

dynamics (a.o. Viedma et al., 1997; Díaz-Delgado et al., 2003; McMichael et al., 2004; Malak 86 

and Pausas, 2006; Clemente et al., 2009). These studies were restricted to a limited number of 87 

images. Some other studies, however, used low resolution time series to monitor regeneration 88 

processes. Cuevas-González et al. (2009), for example, monitored post-fire forest recovery in 89 

Siberia using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived NDVI data, 90 

while van Leeuwen et al. (2010) conducted a similar study in three different study areas 91 

(Spain, Israel and USA). At the expense of spatial detail, these studies offer the advantage of 92 

image acquisition with high temporal frequency (van Leeuwen et al., 2010; Veraverbeke et 93 

al., 2011). Including the temporal dimension, however, often hampers the differentiation 94 

between post-fire effects and seasonal dynamics (Veraverbeke et al., 2010a, Lhermitte et al., 95 

2011). 96 

The post-fire environment typically consists of a mixture of vegetation and substrate. Thus, 97 

monitoring post-fire regeneration processes essentially poses a sub-pixel issue at the 98 

resolution of most operational satellite systems such as Landsat. A number of image analysis 99 



techniques accommodating mixing problems exist (Atkinson et al., 1997; Arai, 2008) with 100 

Spectral Mixture Analysis (SMA) being the most common technique utilized in many 101 

applications (a.o. Roberts et al., 1998; Asner and Lobell, 2000; Riaño et al., 2002; Roder et 102 

al., 2008; Somers et al. 2010ab). SMA effectively addresses this issue by quantifying the sub-103 

pixel fraction of cover of different endmembers, which are assumed to represent the spectral 104 

variability among the dominant terrain features. A major advantage of SMA is its ability to 105 

detect low cover fractions, something which remains difficult with the traditional vegetation 106 

indices (VIs) approach (Henry and Hope, 1998; Elmore et al., 2000; Rogan and Franklin, 107 

2001). Moreover, SMA directly results in quantitative abundance maps, without the need of 108 

an initial calibration based on field data as with VIs (Somers et al. 2010a, Vila and Barbosa, 109 

2010). With regards to post-fire effects, rather few studies employed SMA to monitor post-110 

fire vegetation responses (Riaño et al., 2002; Roder et al., 2008; Sankey et al., 2008; Vila and 111 

Barbosa, 2010). Although results of these studies were consistent, they were all restricted to 112 

simple linear SMA models in which only one spectrum was allowed for each endmember. As 113 

a consequence, the performance of these SMA models often appeared to be suboptimal 114 

(Roder et al., 2008; Vila and Barbosa, 2010) because these models did not incorporate the 115 

natural variability in scene conditions of terrain features inherent in remote sensing data 116 

(Asner, 1998). To overcome this variability effect a number of solutions have been presented 117 

(Asner and Lobell, 2000; Zhang et al. 2004, 2006; Somers et al. 2010b). Multiple endmember 118 

SMA (MESMA), as presented by Roberts et al. (1998), probably is the most widely used 119 

technique to reduce the variability effects. In this model natural variability is included by 120 

allowing multiple endmembers for each constituting terrain feature. These endmember sets 121 

represent the within-class variability (Somers et al., 2009a) and MESMA models search for 122 

the most optimal endmember combination by reducing the residual error when estimating 123 

fractional covers (Asner and Lobell, 2000). Rogge et al. (2006), however, clearly 124 



demonstrated that reducing the residual error by applying MESMA not always results in the 125 

selection of the most appropriate endmember spectrum. An initial segmentation of the area 126 

prior to the unmixing process in order to retain areas which reveal a high similarity in the 127 

spectral properties of a certain endmember has been presented as a sound and computationally 128 

efficient solution to address this issue (Rogge et al., 2006). 129 

In this context, we aim to map vegetation abundance three year after the large 2007 130 

Peloponnese (Greece) wildfires using Landsat Thematic Mapper (TM) imagery. We contrast 131 

traditional simple SMA with one spectrum for each endmember with two approaches who 132 

account for the natural variability in substrates. The first approach is MESMA while the 133 

second method is a segmented SMA in which ancillary information (lithological map) is used 134 

to force the endmember selection. Using a combination of field and simulation techniques the 135 

accuracy of the MESMA and segmented SMA is assessed and compared to the traditional 136 

simple SMA. 137 

2 Methodology 138 

2.1 Study area 139 

The study focuses on the recovery of several large burned areas situated at the Peloponnese 140 

peninsula, in southern Greece (36°50’-37°40’ N, 21°30'-22°20' E) (Figure 1). The fire scars 141 

date from the 2007 summer. These fires were the worst natural disaster of the last decades in 142 

Greece, both in terms of human losses and the extent of the burned area. Elevations range 143 

between 0 and 2404 m above sea level. Limestone sediments cover most of the mountainous 144 

inland. Also significant outcrops of flysch sediments occur (Institute of Geology and Mineral 145 

Exploration, 1983; Higgins and Higgins, 1996). Flysch sediments are dominated by sandstone 146 

with finer siltstone and clay (Institute of Geology and Mineral Exploration, 1983; Higgins and 147 

Higgins, 1996). The hilly and mountainous inland is covered with shallow and gravelly soils 148 

(European Commission, 2005). The climate is typically Mediterranean with hot, dry summers 149 



and mild, wet winters. For the Kalamata meteorological station (37°4’ N, 22°1’ E) the average 150 

annual temperature is 17.8 °C and the mean annual precipitation equals 780 mm (Hellenic 151 

National Meteorological Service, www.hnms.gr, accessed 20 December 2010). The fires 152 

consumed more than 175 000 ha, which merely consisted of shrub land and pine forest 153 

(Veraverbeke et al., 2010a). Black pine (Pinus nigra) is the dominant conifer species. The 154 

shrub layer is mainly characterised by Quercus coccifera, Q. frainetto, Erica arborea and 155 

Arbutus unedo. Perennial grasses cover significant parts of the ground. These grasses reveal 156 

summer-dormancy and are not photosynthetically active during the Mediterranean summer 157 

drought (Volaire and Lelievre, 2010). Mediterranean-type shrub lands are highly resilient to 158 

burning due to both obligate seeder and resprouter fire-adapted strategies. They regenerate in 159 

a couple of years (Trabaud, 1981; Capitaino and Carcaillet, 2008) in a so called 160 

autosuccession process (Hanes, 1971). Conversely, the recovery of the forests is considerably 161 

slower and can take up to several decades (Viedma et al., 1997; van Leeuwen et al, 2010). 162 

FIGURE 1 HERE 163 

2.2 Field data 164 

2.2.1 Spectral library 165 

In September 2010, field spectrometry measurements of the dominant terrain features (i.e. 166 

endmembers) were collected in the burned areas three years after the fire. Measurements were 167 

obtained within one hour of local solar noon on clear-sky days with a single channel 168 

spectroradiometer (UniSpec-SC) covering the 300-1100 nm spectral domain with a 3.7 nm 169 

resolution (PP Systems, 2006). 59 top-of-canopy (TOC) measurements of regenerating 170 

vegetation were recorded. Canopy height ranged between 0.5 and 2 m which made it possible 171 

to collect TOC signatures without the need of a measurement platform. In addition, 39 spectra 172 

of non-photosynthetic (i.e. brown) vegetation and 29 spectra of shallow and gravelly soils of 173 

both flysch and limestone sediments were also obtained: 15 above flysch substrate and 14 174 



above limestone substrate. The spectra of each class were collected from various locations 175 

throughout the study area. All measurements were obtained while holding the sensor 0.3 to 176 

0.5 m above the sample. The shadow endmember was assumed to be a uniformly dark 177 

component and was modeled as a flat 1 % reflectance (Lelong et al., 1998; Somers et al., 178 

2009a, 2010ab). The spectra were resampled to the TM wavebands to facilitate further 179 

analysis. Figure 2A shows the mean spectral signatures of each constituting endmember. The 180 

TM visual and near-infrared (VNIR) band passes are indicated in the figure. In the area two 181 

main substrate classes appear: limestone and flysch sediments. Corresponding spectral 182 

signatures are plotted with dashed lines in figure 2A, whereas figure 2B shows the occurrence 183 

of these two substrate classes in the 2007 burned areas. This classification was obtained after 184 

interpreting and digitizing the geological map of the area (Institute for Geology and Mineral 185 

Exploitation 1983). The difference in the substrates' optical properties is clear from the figure. 186 

The limestone substrate is relatively bright compared to the darker flysch substrate. 187 

FIGURE 2 HERE 188 

2.2.2 Line transect data 189 

78 line transect plots were sampled to estimate the abundance of regenerating vegetation in 190 

the 2007 burned areas three years post-fire, in September 2010. 46 plots were measured in 191 

flysch areas whereas the remaining 32 samples were obtained on a limestone substrate. The 192 

sample scheme was designed for the 30 m Landsat resolution. The plots were selected during 193 

several one-day hikes based on a stratified sampling approach taking into account the 194 

constraints on mainly accessibility and time, encompassing the range of variability in 195 

recovery rates in the study area. The plot's centre coordinates were recorded with a handheld 196 

Garmin eTrex Visa Global Positioning System (GPS, 15 m error in x and y: Garmin, 2005). 197 

To minimize the influence of spatial autocorrelation plots were located at least 500 m apart. 198 

They consist of two perpendicular 60 m line transects, of which the first was directed north-199 



south. Using the point-intercept method (Bonham, 1989; Clemente et al., 2009; van Leeuwen 200 

et al., 2010; Vila and Barbosa, 2010) at a 1 m interval along the line transect, vegetation 201 

abundance was estimated. The fraction of vegetation cover equals the total number of 202 

vegetation interception points divided by the total number of interception points (Bonham, 203 

1989) (Figure 3). 60 m linear transects were preferred to 30 m transects to anticipate potential 204 

satellite misregistration. Moreover, samples were located in relatively homogeneous areas of 205 

regrowth. Figure 4 shows example plot photographs of shrub land at different recovery rates. 206 

FIGURE 3 HERE 207 

FIGURE 4 HERE 208 

2.3 Satellite data and preprocessing 209 

One 30 m resolution Landsat TM image (path/row 184/34, acquired on July 18, 2010) was 210 

used in this study. We have tried to minimize the difference in phenology between the image 211 

and field data acquisition, however, small differences in phenology and resulting reflectance 212 

might influence the analysis. The image of July 18, 2010 was the acquisition that most closely 213 

resembled the ecosystem status as measured during the field campaign in September 2010. 214 

Analysis was restricted to wavebands between 400 and 1100 nm because of the consistency 215 

with the field spectral library. In addition, these wavebands show a higher signal-to-noise 216 

ratio than other spectral regions (Chen and Vierling, 2006). For TM imagery this results in 217 

four spectral bands: blue (B, 450-520 nm), green (G, 520-600 nm), red (R, 630-690 nm) and 218 

near infrared (NIR, 760-900). 219 

The TM image was geometrically corrected using a set of homologous points of a previously 220 

georeferenced TM image of the study area (Veraverbeke et al., 2010ab, 2011). The resulting 221 

Root Mean Squared Error (RMSE) was lower than 0.5 pixels. The image was registered in 222 

Universal Transverse Mercator (UTM, zone 34S), with ED 50 (European Datum 1950) as 223 

geodetic datum. 224 



Raw digital numbers (DNs) were scaled to at-sensor radiance values (Ls) (Chander et al., 225 

2007). The radiance to reflectance conversion was performed using the COST method 226 

(Chavez 1996): 227 
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); d is the earth-sun distance (astronomical units); and zθ  is the solar zenith angle. The 231 

COST method is a dark object subtraction (DOS) approach that assumes 1 % surface 232 

reflectance for dark objects (e.g. deep water).  233 

Additionally, it was necessary to correct for differing illumination effects due to topography. 234 

This was done based on the modified c-correction method (Veraverbeke et al., 2010c), a 235 

modification of the original c-correction approach (Teillet et al., 1982), using a digital 236 

elevation model (DEM) and knowledge of the solar zenith and azimuth angle at the moment 237 

of image acquisition. Topographical slope and aspect data were derived from a 30 m DEM 238 

(Hellenic Military Geographical Service, HMGS) resampled and co-registered with the TM 239 

images. The illumination is modeled as: 240 
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where iγ  is the incident angle (angle between the normal to the ground and the sun rays); 
 pθ  242 

is the slope angle;  zθ  is the solar zenith angle; 
 aφ  is the solar azimuth angle; and oφ  is the 243 

aspect angle. Then terrain corrected reflectance tr  is defined as: 244 
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where ck is a band specific parameter kkk mbc =  where bk and mk are the respective 246 

intercept and slope of the regression equation ikka mbr γcos+= . Since topographic 247 

normalization works better when applied separately for specific land cover types (Bishop and 248 

Colby, 2002) specific c-values for the recovering 2007 scars were calculated by masking the 249 

unburned areas (Veraverbeke et al., 2010c). 250 

2.4 SMA 251 

SMA is a commonly used image analysis technique to derive abundance estimates of 252 

dominant ground components (e.g. green vegetation, substrates, etc.). Although some authors 253 

recognize the occurrence of multiple photon scattering (Ray and Murray, 1996; Somers et al. 254 

2009b), most vegetation monitoring studies consider a mixed pixel spectrum (r) as a linear 255 

combination of pure spectral signals of its constituent components or endmembers, weighted 256 

by their corresponding sub-pixel fractional covers (Adams et al., 1986): 257 

ε+= Mfr            (4) 258 

where M is a matrix in which each column corresponds with the pure spectral signal of a 259 

specific endmember, f is a column vector [ ]T

mff ,...,1  denoting the cover fractions occupied by 260 

each of the endmembers in the pixel. In this study, green vegetation, brown vegetation, 261 

substrate and shadow are the endmembers of interest. ε  represents the residual error. 262 

Equation 4 is often solved by estimating abundance fractions using least squares error 263 

estimates. Once the pure spectral signals of the endmembers are known, the fraction vector f is 264 

calculated by minimizing the following equation: 265 
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where n is the number of spectral bands (Barducci and Mecocci, 2005). Generally, physically 267 

meaningful abundance estimates are obtained by constraining the cover fraction to sum to 268 

unity and to be positive (Roberts et al., 1993).  269 



Endmembers may be derived from spectral libraries built from field or laboratory 270 

measurements (Roberts et al., 1998). Yet, endmember reference spectra can also be derived 271 

directly from the image data themselves (Bateson et al., 2000). Even in quickly recovering 272 

ecosystems, the diameter of woody individuals seldom exceeds 2 m in a medium-term 273 

perspective (3 years post-fire) (Keeley and Keeley, 1981; Malanson and Trabaud, 1988; 274 

Clemente et al., 1996). As a result, the occurrence of pure image pixels in the post-fire 275 

recovery areas is very rare at the Landsat 30 m resolution. As a consequence we acquired pure 276 

field spectra as described in section 2.2.1. To account for endmember variability, several 277 

authors suggest to evaluate multiple endmember combinations from the spectral library 278 

instead of using a fixed mean signature per endmember (Roberts et al., 1998; Asner and 279 

Lobell, 2000). Then, pixels are iteratively decomposed using different sets of endmember 280 

combinations and ultimately these fractional covers corresponding with the iteration that 281 

revealed the lowest least squares error are selected. This method is widely known as MESMA 282 

(Roberts et al., 1998). MESMA, however, does not always select the most appropriate 283 

endmember spectrum (Rogge et al., 2006). A prior segmentation of the imagery in zones that 284 

reveal a high similarity in the spectral properties of a certain endmember has been presented 285 

as a sound and computationally efficient solution for this issue (Rogge et al., 2006). 286 

We executed three linear unmixing models. Each model used the mean spectrum as 287 

endmember for green and brown vegetation. The difference between the different models, 288 

however, is the definition of the substrate endmember: 289 

• The first model using the mean substrate spectrum as soil endmember and is referred 290 

to as simple SMA. 291 

• The second model is a simple MESMA in which two different soil spectra are 292 

incorporated (the mean flysch and limestone spectra). 293 



• The third model forces the choice between the mean limestone or flysch spectrum 294 

based on ancillary data. We used a generalized lithological map (Figure 2B) to ensure 295 

the proper substrate endmember selection. This technique is referred to a segmented 296 

SMA. 297 

Preliminary experiments indicated that it was impossible to discriminate between the brown 298 

vegetation and substrate endmembers. This is explained by their high spectral similarity 299 

(Figure 2A) and corroborates with previous findings of Goodwin et al. (2005), Gill and Phinn 300 

(2009) and Somers et al. (2010b). As such, the best characterization of image variance was 301 

achieved with a three-endmember (green vegetation, substrate and shadow) model. To obtain 302 

ecologically meaningful estimates, the shadow cover fraction cover was distributed over the 303 

green vegetation and substrate components, proportionally to the estimated fractional cover of 304 

these components (Roder et al., 2008). 305 

2.5 Analysis method 306 

2.5.1 Simulated data 307 

The analysis is twofold. Firstly, we used the spectral library with pure substrate (29) and 308 

vegetation signals (59) to create simulated mixed pixels. According to equation 4, a total of 309 

1000 mixed vegetation-substrate spectra were calculated. 500 of them were constituted with a 310 

limestone spectrum while for the other half a flysch endmember was used. Pure pixel spectra 311 

combinations and fractional covers were randomly assigned to each pixel. To account for 312 

ambient and instrumental error, normally distributed noise was added to the signal (with a 313 

mean of zero and standard deviation ranging from 0 % to 15 % of the mixed signal, Asner and 314 

Lobell, 2000). Subsequently, each mixed spectrum was unmixed using the three different 315 

models. The first model, traditional simple SMA, uses one spectrum for each endmember. 316 

The second model, MESMA, chooses the substrate endmember (flysch or limestone) 317 

corresponding with the lowest residual error. Finally, the segmented SMA model forces the 318 



choice between the limestone or flysch endmember based on ancillary knowledge. Simulated 319 

data supply a reliable means to evaluate the performance of the various models as it inherently 320 

provides correct validation data (Rogge et al., 2006). The performance of each model was 321 

expressed in the coefficient of determination (R
2
) of the linear regression with the estimated 322 

vegetation fractions as independent variable and the modeled fractional vegetation covers a 323 

dependent variable. Separate regression models were performed for the limestone mixtures, 324 

the flysch mixtures and the pooled dataset comining limestone and flysch mixtures. In 325 

addition, the selection of the proper substrate endmember by the MESMA model was 326 

evaluated using the knowledge of the set-up of the simulation experiment as reference data. 327 

2.5.2 Landsat imagery 328 

The second part of the analysis focused on the Landsat TM data. The same three unmixing 329 

models were applied and vegetation fractional covers of the line transect locations were 330 

extracted by calculating the mean index value of a 3-by-3 pixels matrix. It is widely accepted 331 

that using the mean of a pixel matrix minimizes the effect of potential misregistration (Ahern 332 

et al. 1991). Linear regressions were performed to correlate the TM fractional covers 333 

(independent variables) and line transect field data of vegetation recovery (dependent 334 

variables). Regression model results were compared using the R
2
 statistic. Again, separate 335 

regression models were performed for the 32 limestone plots, for the 46 flysch samples and 336 

for the 78 field ratings together. The ancillary knowledge of the constituting substrate 337 

endmember was also used to assess the performance of the MESMA model's endmember 338 

spectrum selection. The best method was used to map the vegetation abundance three years 339 

after the large 2007 Peloponnese wildfires. 340 

3 Results 341 

3.1 Simulated data 342 



Figure 5 displays the scatter plots and regression lines of the simulation experiments. In figure 343 

5A the results of the traditional SMA model are visualized, while figure 5C and 5E 344 

respectively depict the outcomes of the MESMA and segmented SMA models. A comparison 345 

between the simple SMA and MESMA model learns that the R
2
 between modeled and 346 

estimated fraction covers was higher for MESMA compared to simple SMA for the flysch 347 

subset, limestone subset and the whole dataset (respectively 0.75, 0.75 and 0.68 for simple 348 

SMA and 0.79, 0.79 and 0.77 for the three datasets for MESMA). However, the goodness-of-349 

fit of the segmented SMA for the pooled dataset was yet higher (R
2
 = 0.79), whereas R

2
 350 

values of the substrate subsets were equal to the MESMA model. Moreover, for the 351 

segmented SMA the regression parameters of the flysch subset, limestone subset and pooled 352 

dataset closely resembled each other (slope respectively 0.77, 0.78 and 0.78 and intercept 0.12 353 

for three datasets) whereas with simple unmixing regression slope (0.90 for the flysch subset, 354 

0.70 for the limestone subset and 0.74 overall) and intercept (-0.04 for the flysch subset, 0.21 355 

for the limestone subset and 0.12 pooled) significantly diverged. Also for MESMA a similar 356 

divergence was present in the data: the regression slope equalled respectively 1, 0.79 and 0.86 357 

for the flysch, limestone and pooled data, whereas the intercept was respectively -0.08, 0.12 358 

and 0.04. The divergence of the different regression lines as observed with simple SMA and 359 

MESMA was especially obvious for low vegetation cover estimates. Figures 5B, 5D and 5F 360 

respectively show the same model as presented in figures 5A, 5C and 5E, however, in these 361 

models randomly distributed noise was added. This did not impact the trends described above, 362 

however, R
2
 values revealed a small drop compared to their noise-free counterpart. The only 363 

exception against this drop was the traditional SMA model of the pooled dataset which 364 

retained its R
2
 = 0.68. 365 

FIGURE 5 HERE 366 



The error matrix of the selection of the substrate spectrum by MESMA based on simulated 367 

data is tabulated in Table 1. The overall accuracy equalled 61 % and a relatively low Kappa 368 

coefficient of 0.21 was obtained. The MESMA model's substrate spectrum selection revealed 369 

a high omission error for the flysch class (producer's accuracy of 29 %) and relatively high 370 

commission error for the limestone class (user's accuracy of 57 %). 371 

TABLE 1 HERE 372 

3.2 Landsat imagery 373 

Figure 6 presents scatter plots and regression line between the line transect field ratings and 374 

the vegetation fractional covers retrieved from the Landsat imagery. In corroboration with the 375 

results from the simulations (Figure 5), the regression parameters of the segmented SMA 376 

model were very similar for the flysch subset, limestone subset and pooled dataset (slope 377 

respectively 1.02, 0.99 and 1.03 and intercept respectively -0.06, -0.08 and -0.08). This 378 

contrasts with the more differing regression slope and intercept of the simple SMA (slope 379 

respectively 1.07, 0.93 and 0.83 for the flysch subset, limestone subset and pooled dataset and 380 

intercept respectively -0.15, -0.01 and 0) and MESMA models (slope respectively 0.71, 0.89 381 

and 0.86 for the flysch subset, limestone subset and pooled dataset and intercept respectively 382 

0.10, -0.01 and 0.06). For the simple SMA, this did not result in less optimal regression 383 

models for the substrate subsets, however, the overall R
2
 was clearly higher for the model that 384 

forced the flysch-limestone endmember choice (R
2
=0.70 versus R

2
=0.65 for simple SMA). 385 

For MESMA, the goodness-of-fit was lower for both subset and pooled data (e.g. R
2
=0.63 for 386 

the pooled dataset). In addition, the regression lines of the segmented SMA more closely 387 

resembled the expected one-one line compared to the other models.  388 

FIGURE 6 HERE 389 

The error matrix of the selection of the substrate spectrum by MESMA based on field data is 390 

listed in Table 2. Similar to the results of table 1, the overall accuracy equalled 62 % and a 391 



relatively low Kappa coefficient of 0.18 was obtained. The MESMA model's substrate 392 

spectrum selection revealed a high omission and commission error for the limestone class 393 

which resulted in a relatively low producer's accuracy (41 %) and user's accuracy (54 %) for 394 

this class. Producer's and user's accuracy for the flysch category were slightly higher 395 

(respectively 76 % and 65 %). 396 

The ancillary information of figure 2B was used to differentiate between relatively bright 397 

(limestone) and dark (flysch) substrates when mapping the post-fire vegetation cover while 398 

accounting for background variability using the segmented SMA model (Figure 7).  399 

4 Discussion 400 

Post-fire recovery landscapes essentially are mixed vegetation-substrate environments. A 401 

plethora of studies made use of this feature to map post-fire vegetation cover with the NDVI 402 

(a.o. Viedma et al., 1997; Díaz-Delgado et al., 2003; McMichael et al., 2004; Malak and 403 

Pausas, 2006; Clemente et al., 2009). To obtain qualitative fractional cover maps, these index 404 

values require a prior calibration with field estimates of vegetation cover (Clemente et al., 405 

2009). In this study, SMA demonstrated to be a strong alternative for the spectral indices 406 

approach, as SMA outputs fraction images without an initial regression fit between remotely 407 

sensed data and field ratings. 408 

The regression fit between the line transect field estimates of recovery and the most optimal 409 

SMA resulted in moderate-high R
2
 = 0.70. The residual variation can be explained by the fact 410 

that both field and remotely sensed estimates are imperfect proxies for vegetation cover. The 411 

line transect method is a relatively rough approach to estimate fractional vegetation cover 412 

while several noise factors hamper satellite image analysis. Inaccurate atmospheric correction 413 

(Gong et al., 2008), suboptimal illumination correction (Veraverbeke et al. 2010c), sensor 414 

noise (Plaza et al., 2004), slight differences in acquisition timing between field and image data 415 

or the unmixing model structure itself (e.g. non-linear mixing due to multiple photon 416 



scattering among different ground components, Borel and Gerstl, 1994; Somers et al., 2009b) 417 

are all known to create noise in image analyses. The influence of soil brightness variation, 418 

however, was a very important factor impacting model performance. 419 

Both the simulation experiment and Landsat application demonstrated that accounting for soil 420 

brightness variations by the segmented approach significantly improved the SMA model. The 421 

simple SMA with one single spectrum for each endmember provided reasonable regression 422 

models for each substrate class separately, however, model performance of the pooled dataset 423 

was considerably weaker. This is explained by the fact that traditional SMA resulted in clearly 424 

different regression lines depending on substrate class (Figure 5A, 5B and 6A). In other 425 

words, the relationship between the observed (field or modeled) vegetative fraction and the 426 

estimated fraction from the simple SMA model was determined by the brightness of the 427 

background. Thus, neglecting this background brightness difference produced a weaker 428 

overall fit. Moreover, the simple SMA model underestimates the vegetative fraction in 429 

limestone areas while in flysch areas the opposite is true. As shown in figure 2A the optical 430 

properties of these two substrate types are clearly different. They represent a relatively bright 431 

(limestone) and dark (flysch) background. MESMA is the most widely used technique to 432 

include endmember variability in a SMA model (Roberts et al., 1998). Table 1 and 2, 433 

however, clearly indicated that MESMA did not manage to select the appropriate substrate 434 

spectrum in this case study. The Kappa coefficients of 0.18 an 0.21 for respectively the 435 

simulation experiment and the Landsat application revealed that the substrate spectrum 436 

selection was only slightly better than an agreement by chance. As a consequence, MESMA 437 

did not solve the substrate variability issue in this application. This can be explained by the 438 

fact that the spectral signatures of limestone and flysch are almost linear translations of each 439 

other (Figure 2A). Due to the lack of shape differences between these two substrate spectra, 440 

MESMA did not demonstrate a strong tendency to select the appropriate soil endmember. In 441 



contrary, the ultimate selection of the substrate endmember appeared to be rather arbitrarily. It 442 

is recognized that when different substrate endmember spectra reveal clear shape differences, 443 

MESMA can be a very straightforward solution to find the proper substrate spectrum based on 444 

an iterative process (Roberts et al., 1998). 445 

Because of the failure of the MESMA model in this case study, we applied a segmented 446 

approach in which the substrate endmember choice was based on ancillary knowledge (i.e. the 447 

simulation set up in the case of the simulations and a generalized lithological map for the 448 

Landsat application). For this model, regression slope and intercept did not depend on 449 

substrate class (Figures 5E, 5F and 6C). So irrespective which substrate type, the regression 450 

lines were similar. As a consequence, potential over- or underestimation of vegetative cover 451 

was eliminated and the performance of the pooled regression model was equally high. The 452 

SMA model that accounts for soil brightness variations also produced regression fits very 453 

close to the expected one-one line, which proves its consistency. These beneficial results of 454 

the segmentation approach corroborate with Rogge et al. (2006) who demonstrated the 455 

effectiveness of prior segmentation to overcome poor endmember spectrum selection by 456 

MESMA. In addition, limiting the number of the potential endmember spectra favors the 457 

computational efficiency compared to MESMA models (Rogge et al., 2006).  458 

In post-fire recovery studies using SMA, Riaño et al. (2002), Roder et al. (2008) and Vila and 459 

Barbosa (2010) all employed one single substrate endmember. Disregarding soil brightness 460 

variations potentially adds an explanation to the observed suboptimality of the SMA outcomes 461 

observed by Roder et al. (2008) and Vila and Barbosa (2010). We want to remark that in the 462 

simulation model vegetation cover was slightly overestimated for very low vegetative covers, 463 

while the model slightly underestimated the vegetative fraction for mixtures in which the 464 

vegetation component dominates (Figure 5). For extreme fractional vegetation covers (close 465 

to zero and one) the SMA simulation models showed a tendency to estimate vegetative 466 



fractional cover as respectively zero and one. This explains the slight over- and 467 

underestimation observed in the simulation experiment. Due to the fact that most field ratings 468 

range between 20-70 % vegetative coverage, this behavior is not present in the regression fit 469 

between Landsat and line transect data. In contrast, the overall regression intercept of the 470 

modified SMA regression model is slightly negative (-0.08). However, the general SMA 471 

constraint that fraction estimates have to be positive (Roberts et al., 1998), prevents the 472 

occurrence of negative fractional covers without biophysical meaning. In the field, the 473 

presence of extreme fractional covers (close to zero or one) was extremely rare, so these cases 474 

do not nullify the performance of the model. In this respect, a totally different scenario would 475 

emerge when one would aim to estimate the post-fire vegetation regrowth very shortly after 476 

the fire, e.g. one year after the fire. Then, it would be wise to additionally evaluate the model 477 

performance for very low vegetation covers. However, in contrast with our study, a one year 478 

post-fire assessment would also need to include a char endmember in the model (Lewis et al., 479 

2007; Robichaud et al., 2007). 480 

A drawback of the proposed method is the need of ancillary data. With a combination of field 481 

knowledge and lithological maps it is relatively easy to construct spectrally similar 482 

lithological units, however, this possibility depends on the availability of such data layers. 483 

Besides among substrates, endmember variability is also present among vegetation species. In 484 

our case study, however, the variability in the spectral response of different vegetation species 485 

was very small compared to large spectral differences between the substrate classes. For this 486 

reason and because of the small sensitivity of broadband sensors to discriminate between 487 

different vegetation types (Somers et al. 2010a), we disregarded vegetation variability in our 488 

analyses. Other pathways to improve the accuracy of the recovery assessment are multiple. A 489 

possible amelioration could be the inclusion of the short-wave infrared (SWIR: 1300-1700 490 

nm) and mid infrared (MIR: 1700-2400 nm) spectral regions in the unmixing process. These 491 



spectral regions have proven to be very effective in discriminating soil and vegetation (Drake 492 

et al., 1999; Asner and Lobell, 2000). Moreover, the SWIR-MIR spectrum is very sensitive to 493 

moisture content (Hunt and Rock, 1989; Zarco-Tejada et al., 2003) and are consequently 494 

strongly related to plant water content. Carreiras et al. (2006) demonstrated that adding the 495 

SWIR-MIR Landsat bands resulted in better estimates of tree canopy cover in Mediterranean 496 

shrublands. To retain consistency with the field spectral library these wavebands were not 497 

included in our study (Somers et al., 2010a). Additionally, enhancing the spectral resolution 498 

by employing hyperspectral data would increase the amount of spectral detail which would 499 

benefit the differentiation between spectra. By including more and other spectral wavebands 500 

the unmixing model could gain discriminative power. Potentially, this would make it even 501 

possible to distinguish between non-photosynthetic vegetation and substrate (Asner and 502 

Lobell, 2000; Somers et al; 2010a), which appeared to be impossible based on the Landsat 503 

VNIR bands. 504 

5 Conclusions 505 

Using a combination of field and simulation techniques, the importance of accounting for 506 

background brightness variability in estimating fractional vegetation cover using SMA was 507 

highlighted. Although the traditional SMA model in which the substrate endmember was 508 

defined as the arithmetic mean of two flysch and limestone substrates subclasses resulted in 509 

reasonable regression fits for the flysch and limestone datasets separately, the regression fit 510 

performed on the pooled dataset was considerable weaker. The regression lines of the 511 

different datasets (only limestone, only flysch and pooled) significantly diverged and as such 512 

vegetative cover estimations depended on substrate type. The use of a single spectrum 513 

substrate endmember thus resulted in an over- or underestimation of the vegetative cover 514 

fraction related to background brightness differences. Traditionally, MESMA is applied to 515 

address the endmember variability issue, however, in this case study MESMA did not manage 516 



to select the appropriate substrate endmember due to the lack of shape difference between the 517 

flysch and limestone spectra. Therefore, a prior segmentation based on ancillary information 518 

(lithological map) was executed to incorporate soil color variation in a segmented SMA 519 

model. This model forces the proper substrate endmember spectrum choice. The overall 520 

regression fit of the segmented approach significantly improved and the discrepancy between 521 

the regression of the different subsets significantly reduced. Moreover, the resulting 522 

regression line very closely resembled the expected one-one line between observed and 523 

estimated fractional vegetation covers. 524 

This paper demonstrated the utility of SMA for monitoring post-fire vegetation regeneration 525 

three year after the 2007 Peloponnese wildfires. Although a segmented approach to account 526 

for soil brightness variations significantly improved the model, further research is required to 527 

evaluate the model's performance for other soil types, with other image data and at different 528 

post-fire timings. 529 
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Figure 1. Location of the study area (the areas encircled with black represent the 2007 burned areas) and 732 

distribution of the field plots (marked with white crosses) (Landsat Thematic Mapper image July 18, 2010 RGB-733 

432). 734 

Figure 2. Mean spectral signatures of green vegetation, brown vegetation, and substrate acquired in the field with 735 

a Unispec single channel field spectroradiometer (A). The shadow endmember is modeled as a flat 1 % 736 

reflectance (Lelong et al., 1998). Specific spectra for limestone and flysch substrate are indicated by the dashed 737 

lines. The Thematic Mapper (TM) visual and near infrared bandpasses are also shown. B shows the presence of 738 

flysch and limestone substrates in the 2007 burned areas (based on Institute for Geology and Mineral 739 

Exploration, 1983). 740 

Figure 3. Line transect plot design (Bonham 1989) 741 

Figure 4. Example plot photographs of shrub land with a high (A), moderate (B) and low (C) recovery rate. 742 

Figure 5. Scatter plots and regression lines of modeled versus estimated fractional vegetation cover of the 743 

simulation experiments for the noise-free simple Spectral Mixture Analysis (SMA) (A), the noise-free multiple 744 

endmember SMA (MESMA) (C) and the noise-free segmented SMA (E) and the equivalent models with noise 745 

(Asner and Lobell, 2000) (respectively B, D and F). Separate scatter plots and regression lines are displayed for 746 

the flysch subset (n = 500) and limestone subset (n = 500). Regression lines of the pooled dataset (n = 1000) are 747 

also indicated. 748 

Figure 6. Scatter plots and regression lines of line transect ratings versus fractional vegetation cover derived from 749 

Landsat imagery for the simple Spectral Mixture Analysis (SMA) (A), the multiple endmember SMA (MESMA)  750 

(B) and segmented SMA (C). Separate scatter plots and regression lines are displayed for the flysch subset (n = 751 

46) and limestone subset (n = 32). Regression lines of the pooled dataset (n = 78) are also indicated. 752 

Figure 7. Fractional vegetation cover map three years after the fires based on the segmented SMA model. 753 

 754 

Table 1. Error matrix of the substrate spectrum selection by the multiple endmember Spectral Mixture Analysis 755 

(MESMA) model for the simulation experiment. The reference data were retrieved from the experimental set-up. 756 

Table 2. Error matrix of the substrate spectrum selection by the multiple endmember Spectral Mixture Analysis 757 

(MESMA) model for the Landsat application. The reference data are the line transect field plots. 758 


