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Abstract 11 

Burn severity is an important parameter in post-fire management. It incorporates both the direct 12 

fire impact (vegetation depletion) and ecosystem responses (vegetation regeneration). From a 13 

remote sensing perspective, burn severity is traditionally estimated using Landsat’s differenced 14 

Normalized Burn Ratio (dNBR). In this case study of the large 2007 Peloponnese (Greece) 15 

wildfires, Landsat dNBR estimates correlated reasonably well with Geo Composite Burn Index 16 

(GeoCBI) field data of severity (R2 = 0.56). The usage of Landsat imagery is, however, restricted 17 

by cloud cover and image-to-image normalization constraints. Therefore a multi-temporal burn 18 

severity approach based on coarse spatial, high temporal resolution Moderate Resolution Imaging 19 
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Spectroradiometer (MODIS) imagery is presented in this study. The multi-temporal dNBR 20 

(dNBRMT) is defined as the one-year integrated difference between burned pixels and their 21 

unique control pixels. These control pixels were selected based on time series similarity and 22 

spatial context and reflect how burned pixels would have behaved in the case no fire had 23 

occurred. Linear regression between downsampled Landsat dNBR and dNBRMT estimates 24 

resulted in a moderate-high coefficient of determination R2 = 0.54. dNBRMT estimates are 25 

indicative for the change in vegetation productivity due to the fire. This change is considerably 26 

higher for forests than for more sparsely vegetated areas like shrub lands. Although Landsat 27 

dNBR is superior for spatial detail, MODIS-derived dNBRMT estimates present a valuable 28 

alternative for burn severity mapping at continental to global scale without image availability 29 

constraints. This is beneficial to compare trends in burn severity across regions and time. 30 

Moreover, thanks to MODIS’s repeated temporal sampling, the dNBRMT accounts for both first- 31 

and second-order fire effects. 32 

Keywords: differenced Normalized Burn Ratio, fire severity, burn severity, MODIS, Landsat 33 

Thematic Mapper, Composite Burn Index, multi-temporal, vegetation regeneration 34 

1 Introduction 35 

Biomass burning is a major disturbance in almost all terrestrial ecosystems (Pausas, 2004; Riano 36 

et al., 2007). At landscape level, wildland fires partially or completely remove the vegetation 37 

layer and affect post-fire vegetation composition (Epting and Verbyla 2005). The fire-induced 38 

vegetation depletion causes abrupt changes in carbon, energy and water fluxes at local scale 39 

(Amiro et al., 2006a; Montes-Helu et al., 2009), thereby influencing species richness, habitats and 40 

community composition (Moretti et al., 2002; Capitaino and Carcaillet, 2008). Accurate estimates 41 
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of post-fire effects are therefore of paramount importance. To name these post-fire effects the 42 

terms fire severity and burn severity are often interchangeably used (Keeley, 2009) describing the 43 

amount of damage (Chafer, 2008), the physical, chemical and biological changes (Lee et al., 44 

2008) or the degree of alteration (Eidenshink et al., 2007) that fire causes to an ecosystem. Some 45 

authors, however, suggest a clear distinction between both terms by considering the fire 46 

disturbance continuum (Jain et al., 2004), which addresses three different temporal fire effects 47 

phases: before, during and after the fire. In this context, fire severity quantifies the short-term fire 48 

effects in the immediate post-fire environment whereas burn severity quantifies both the short- 49 

and long-term impact as it includes response processes (e.g. resprouting, delayed mortality) 50 

(Lentile et al., 2006; Key, 2006). Figure 1 represents a summary of post-fire effects terminology.  51 

FIGURE 1 HERE 52 

In remote sensing studies burn severity is traditionally estimated using Landsat imagery (Key and 53 

Benson, 2005; French et al., 2008). A popular approach, partly because of its conceptual 54 

simplicity, can be found in ratioing band reflectance data. In this respect the Normalized Burn 55 

Ratio (NBR) has become accepted as the standard spectral index to assess burn severity (Lopez-56 

Garcia and Caselles, 1991; Key and Benson, 2005; French et al., 2008, Veraverbeke et al., 57 

2010a). The NBR relates to vegetation moisture content by combining the near infrared (NIR) 58 

and mid infrared (MIR) spectral regions. Generally, pre- and post-fire NBR images are bi-59 

temporally differenced, resulting in the differenced NBR (dNBR). 60 

The dNBR method relies on Landsat imagery and thus depends on image availability, which is 61 

limited to infrequent images over small areas due to Landsat’s 16-day revisiting cycle and cloud 62 

cover (Ju and Roy, 2008). Bi-temporal studies are even more hampered as they require an 63 

effective image-to-image normalization (Coppin et al. 2004) including the removal of 64 

phenological, atmospheric and bi-directional reflectance distribution function (BRDF) effects 65 
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(Verbyla et al., 2008; Veraverbeke et al., 2010b). As a result Landsat-based burn severity studies 66 

have proven to be valuable for obtaining detailed information over specific fires, however, the 67 

magnitude of the observed dNBR change heavily depends on assessment timing (Key, 2006; 68 

Veraverbeke et al., 2010c). This temporal dissimilarity limits the comparison between bi-69 

temporal dNBR assessments of different fires (Eidenshink et al., 2007, Verbyla et al., 2008), 70 

especially when a comparison between different ecoregions is required (Eidenshink et al., 2007, 71 

French et al., 2008). The use of high temporal, coarse spatial resolution data possibly provides a 72 

sound alternative to Landsat dNBR estimates. In addition, their repeated temporal sampling 73 

allows quantifying both the direct fire impact and regeneration processes. To date few studies 74 

have implemented coarse resolution time series to assess burn severity. In this context it is worth 75 

mentioning the effort of Lhermitte et al. (2010a), who illustrated the potential of time series data 76 

to account for inter- and intra-annual post-fire vegetation dynamics. In their method each burned 77 

pixel is compared with an unburned control pixel. These control pixels were selected based on 78 

pre-fire time series similarity and spatial context. 79 

The aim of this study is to present a multi-temporal dNBR (dNBRMT) burn severity assessment as 80 

an alternative for traditional Landsat dNBR mapping. The method incorporates both the direct 81 

fire impact and vegetation regeneration (Lentile et al., 2006). Moderate Resolution Imaging 82 

Spectroradiometer (MODIS) time series are used over the large 2007 Peloponnese (Greece) 83 

wildfires. dNBRMT

2 Data and study area 85 

 estimates are compared with Landsat and field data. 84 

2.1 Study area 86 

The study area is situated at the Peloponnese peninsula, in southern Greece (36°30’-38°30’ N, 87 

21°-23° E) (see figure 2). The topography is rugged with elevations ranging between 0 and 2404 88 
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m above sea level. The climate is typically Mediterranean with hot, dry summers and mild, wet 89 

winters. For the Kalamata meteorological station (37°4’ N, 22°1’ E) the average annual 90 

temperature is 17.8 °C and the mean annual precipitation equals 780 mm. 91 

FIGURE 2 HERE 92 

After a severe drought period several large wildfires of unknown cause have struck the area in the 93 

2007 summer. The fires were the worst natural disaster of the last decades in Greece, both in 94 

terms of human losses and the extent of the burned area. The fires consumed more than 175 000 95 

ha, which consisted of 57% shrub land, 21% coniferous forest, 20% olive groves and 2% 96 

broadleaved forest (Veraverbeke et al., 2010c). 97 

2.2 Field data 98 

150 Geo Composite Burn Index (GeoCBI) plots were sampled one year post-fire, in September 99 

2008. The GeoCBI is a modification of the Composite Burn Index (CBI) (De Santis and 100 

Chuvieco, 2009). It is an operational tool used in conjunction with the Landsat dNBR approach to 101 

assess burn severity in the field (Key and Benson, 2005). The GeoCBI divides the ecosystem into 102 

five different strata, one for the substrates and four vegetation layers. These strata are: (i) 103 

substrates, (ii) herbs, low shrubs and trees less than 1 m, (iii) tall shrubs and trees of 1 to 5 m, (iv) 104 

intermediate trees of 5 to 20 m and (v) big trees higher than 20 m. In the field form, 20 different 105 

factors can be rated (e.g. soil and rock cover/color change, % LAI change, char height) but only 106 

those factors present and reliably rateable, are considered. The rates are given on a continuous 107 

scale between zero and three and the resulting factor ratings are averaged per stratum. Based on 108 

these stratum averages, the GeoCBI is calculated in proportion to their corresponding fraction of 109 

cover, resulting in a weighted average between zero and three that expresses burn severity. As the 110 
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field data were collected one year post-fire, it is an extended assessment. Additional information 111 

on the field data can be found in Veraverbeke et al. (2010c). 112 

2.3 Landsat data 113 

For the traditional Landsat dNBR assessment two anniversary date Thematic Mapper (TM) 114 

images (path/row 184/34) were used (23/07/2006 and 13/08/2008). In correspondence with the 115 

timing of the field sampling, the post-fire image was acquired one year post-fire. The images 116 

were acquired in the summer, minimizing effects of vegetation phenology and differing solar 117 

zenith angles. The images were subjected to geometric, radiometric, atmospheric and topographic 118 

correction. 119 

The 2008 image was geometrically corrected using 34 ground control points (GCPs), recorded in 120 

the field with a Garmin eTrex Vista GPS (15 m error in x and y (Garmin, 2005)). The resulting 121 

Root Mean Squared Error (RMSE) was lower than 0.5 pixels. The 2006 and 2008 images were 122 

co-registered within 0.5 pixels accuracy. The images were registered in UTM (zone 34S), with 123 

the World Geodetic System 84 (WGS-84) as geodetic datum. 124 

Raw digital numbers (DNs) were scaled to at-sensor radiance values (Ls
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) (Chander et al., 2007) 125 

The radiance to reflectance conversion was performed using the COST method (Chavez, 1996): 126 

         (Eq. 1) 127 

where aρ  is the atmospherically corrected reflectance at the surface; Ls is the at-sensor radiance 128 

(Wm-2sr-1); Ld is the path radiance (Wm-2sr-1); Eo is the solar spectral irradiance (Wm-2

zθ

); d is the 129 

earth-sun distance (astronomical units); and  is the solar zenith angle. The COST method is a 130 

dark object subtraction (DOS) approach that assumes 1% surface reflectance for dark objects 131 

(e.g. deep water). After applying the COST atmospheric correction, pseudo-invariant features 132 
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(PIFs) such as deep water and bare soil pixels, were examined in the images. No further relative 133 

normalization between the images was required. 134 

It was necessary to correct for different illumination effects due to topography as the common 135 

assumption that shading effects are removed in ratio-based analyses does not necessarily hold 136 

true (Verbyla et al., 2008; Veraverbeke et al., 2010b). This was done based on the modified C 137 

correction method (Veraverbeke et al., 2010b), a modification of the original C correction 138 

approach (Teillet et al., 1982), using a DEM and knowledge of the solar zenith and azimuth angle 139 

at the moment of image acquisition. Topographical slope and aspect data were derived from 90 m 140 

Shuttle Radar Topographic Mission SRTM elevation data (Jarvis et al., 2006) resampled and 141 

coregistered with the Landsat images. The illumination is modeled as: 142 

( )oazpzpi φφθθθθγ −+= cossinsincoscoscos       (Eq. 2) 143 

where iγ  is the incident angle (angle between the normal to the ground and the sun rays);  pθ  is 144 

the slope angle; zθ  is the solar zenith angle; aφ  is the solar azimuth angle; and oφ  is the aspect 145 

angle. Then terrain corrected reflectance tρ  is defined as: 146 
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where ck kkk mbc = is a band specific parameter  where bk and mk

ikka mb γρ cos+=

 are the respective intercept 148 

and slope of the regression equation . 149 

Finally, by inputting the NIR (TM4: centered at 830 nm) and MIR (TM7: centered at 2215 nm) 150 

bands NBR and dNBR images were generated: 151 

MIRNIR
MIRNIRNBR

+
−

=   postpre NBRNBRdNBR −=      (Eq. 4) 152 

2.4 MODIS data 153 
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Level 2 daily Terra MODIS surface reflectance (500 m) tiles (MOD09GA) including associated 154 

Quality Assurance (QA) layers were acquired from the National Aeronautics and Space 155 

Administration (NASA) Warehouse Inventory Search Tool (WIST) (https://wist.echo.nasa.gov) 156 

for the period 01/01/2006 till 31/12/2008. These products contain an estimate of the surface 157 

reflectance for seven optical bands as it would have been measured at ground level as if there 158 

were no atmospheric scattering or absorption (Vermote et al., 2002). The data preprocessing steps 159 

included subsetting, reprojecting, compositing, creating continuous time series and indexing. The 160 

study area was clipped and the NIR (centered at 858 nm), MIR (centered at 2130 nm) and QA 161 

layers were reprojected into UTM with WGS 84 as geodetic datum. Subsequently, the daily NIR, 162 

MIR and QA data were converted in 8-day composites using the minimum NIR criterion to 163 

minimize cloud contamination and off-nadir viewing effects (Holben, 1986). The minimum NIR 164 

criterion has proven to allow a more accurate discrimination between burned and unburned pixels 165 

than traditional Maximum Value Composites (MVCs) (Chuvieco et al., 2005). After compositing 166 

bad QA observations were replaced by a Savitzky-Golay filter as implemented in the TIMESAT 167 

software (Jonsson and Eklundh, 2004). The TIMESAT program allows the inclusion of a 168 

preprocessing mask that determines the uncertainty of data values. Cloud-affected observations 169 

were identified using the internal cloud and cloud-adjacency algorithm flags of the QA layer. 170 

These flags consist of binary layers which permit to assign a zero weight value to cloudy and 171 

cloud-adjacent observations. Consequently, these data do not influence the filter procedure. Only 172 

the values of the masked observations were replaced to retain as much as possible the original 173 

NIR and MIR reflectance values. Finally, the NBR index was calculated as using equation 4. 174 

2.5 Control pixel data 175 



9 

Control pixel data were retrieved making use of pre-fire time series similarity and spatial context 176 

(Lhermitte et al., 2010b) as implemented in Veraverbeke et al. (2010c). The control pixel 177 

selection procedure assigns a unique control pixel to each burned pixel. This is done based on 178 

time series similarity between a burned pixel and its closest unburned neighbor pixels during a 179 

pre-fire period. To quantify dissimilarity the averaged Euclidian distance dissimilarity criterion D 180 

was used: 181 

N

NBRNBR
D

N

t

x
t

f
t∑

=

−
= 1

2)(
         (2) 182 

where f
tNBR  and x

tNBR are the respective burned focal and unburned candidate control pixel 183 

time series, while N is the number of observations in pre-fire year (N=46). The Euclidian distance 184 

metric has an intuitive appeal: it quantifies the straight line inter-point distance in a multi-185 

temporal space as distance measure. As a result, it is robust for both data space translations and 186 

rotations. Consequently, it is a very useful metric to assess inter-pixel differences in time series 187 

(Lhermitte et al., 2010b). In this approach the averaged time series from the four most similar out 188 

of eight candidate pixels defines the control pixel time series. This setting accounts for both a 189 

beneficial averaging effect and the advantage of spatial proximity (Veraverbeke et al. 2010c). 190 

The resulting control pixels reflect the vegetation dynamics of each burned pixel in case that 191 

there would not have occurred a fire. Additional information on the control plot selection 192 

procedure can be found in Lhermitte et al. (2010b) and Veraverbeke et al. (2010c). 193 

3 Methodology 194 

Burn severity incorporates both short-and long-term post-fire effects on the environment (Lentile 195 

et al., 2006). Consequently, burn severity is a combination of immediate fire impact and the 196 
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ecosystem’s ability to regenerate. Based on these characteristics, we propose a multi-temporal 197 

dNBR (dNBRMT) that integrates the difference between the NBR values of a burned pixel and its 198 

corresponding control pixel over time. Doing so the dNBRMT is defined as: 199 

N

NBRNBR
dNBR
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        (3) 200 

where f
tNBR  and c

tNBR  are the respective burned focal and unburned control pixel observations, 201 

while N is the number of post-fire observations included in the study (here N=46 for one year) 202 

and t=1 is the first post-fire observation. Figure 2 illustrates the principle of the dNBRMT. 203 

Dividing by the number of post-fire observations N normalizes the dNBRMT data to the same 204 

range as bi-temporal dNBR assessments. dNBRMT estimates will show large positive values for 205 

high burn severity. The application of an integral has been used to characterize vegetation 206 

productivity (Reed et al., 1994; Heumann et al., 2007). The integrated change between NBR 207 

values of control and burned pixels is therefore indicative for the change in vegetation 208 

productivity caused by the fire. To evaluate the performance of the multi-temporal approach 209 

comparison is made with a traditional Landsat TM dNBR assessment and GeoCBI field data. 210 

FIGURE 3 HERE 211 

4 Results 212 

Figure 4A shows the result of the MODIS dNBRMT approach, while figure 4B details a specific 213 

burned area framed in blue in figure 4A. Figure 4C displays the traditional Landsat dNBR, while 214 

figure 4D also depicts the detailed subset. On a coarse scale the MODIS and Landsat assessments 215 

reveal the same patterns of burn severity, however, it is trivial that Landsat estimates are 216 
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characterized by more spatial detail. This is also visible in figure 5. The scatter plot between 217 

GeoCBI and Landsat dNBR estimates is given in figure 5A. The linear regression fit resulted in a 218 

coefficient of determination R2 = 0.56. Figure 5B presents the scatter plot between downsampled 219 

Landsat data and corresponding dNBRMT estimates for the 150 field-sampled locations. The 220 

vertical bars indicate the standard deviation (sd) of the Landsat pixels within one MODIS pixel. 221 

Although the correlation between downsampled Landsat dNBR and MODIS dNBRMT estimates 222 

is moderately high (R2 = 0.54), it is clear that there exists considerable variation within one 223 

MODIS pixel (sd of Landsat dNBR up to 0.25). 224 

FIGURE 4 HERE 225 

FIGURE 5 HERE 226 

In figure 6 mean dNBRMT (sd) is plotted per land cover type. One can clearly see that the one-227 

year integrated change is higher for forests than for more sparsely vegetated covers. dNBRMT 228 

estimates are the highest for coniferous forest, followed by broadleaved forest. Shrub land and 229 

olive groves have considerably lower dNBRMT estimates. Figure 7 examples temporal profiles of 230 

eight pixels. These figures demonstrate that dNBRMT estimates account for both the direct fire 231 

impact and the ability to recover. 232 

FIGURE 6 HERE 233 

FIGURE 7 HERE 234 

5 Discussion 235 

A major advantage of the multi-temporal burn severity approach is its combination of both the 236 

immediate fire impact and vegetation regrowth. As such, it is more tightly connected to the 237 
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definition of burn severity. Key and Benson (2005) stated that burn severity encloses both first 238 

and second order fire effects. The most important first order effect is the fire’s vegetation 239 

consumption, while vegetation regeneration and delayed mortality are substantial second order 240 

effects. In that respect, Lentile et al. (2006) specified that burn severity relates to the amount of 241 

time necessary to return to pre-fire level. As a consequence plots that experienced a high fire 242 

severity and fast regeneration will result in similar dNBRMT outcomes as plots that were only 243 

slightly affected by the fire but with slow recovery. While in some studies it can be important to 244 

distinguish between first- and second-order effects, burn severity incorporates both (Lentile et al., 245 

2006; Keeley, 2009). The application of an integral has been used to characterize vegetation 246 

productivity (Reed et al., 1994; Heumann et al., 2007). As such, the integrated change between 247 

NBR values of control and burned pixels, as gauged by the dNBRMT, reflects the change in 248 

productivity due to the fire. Seasonality and recovery processes vary per land cover type (Reed et 249 

al., 1994; White et al., 1996). As a result, dNBRMT estimates are clearly higher for forests than 250 

for more sparsely vegetated areas (figures 6 and 7). Recovery in forests can take several decades 251 

(Nepstad et al., 1999), whereas shrub species are typified by a relatively fast recovery (Keeley et 252 

al., 2005). The dNBRMT incorporates this difference. Moreover, depending on the application and 253 

the ecotype, one could decide to alter the integration period (one year in this study).  254 

In corroboration with previous findings (French et al., 2008), Landsat dNBR correlated 255 

reasonably well with field data of severity. The correlation between GeoCBI and Landsat data 256 

differed from previously published outcomes based on the same data (Veraverbeke et al. 2010a), 257 

mainly because of some minor changes in satellite preprocessing and the exclusion of ten 258 

unburned field plots. Multi-temporal MODIS burn severity estimates showed a moderate-high 259 

correlation with the dNBR of a traditional bi-temporal Landsat assessment (R2 = 0.54). The slope 260 
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of the regression equation (0.77) was considerably lower than one. In contrast with the one-year 261 

post-fire Landsat assessment, dNBRMT estimates also incorporate observations from the 262 

immediate post-fire period. As a consequence dNBRMT estimates were slightly higher than the 263 

Landsat dNBR. Despite of the coarse scale resemblance between Landsat and MODIS data, 264 

Landsat data are superior to reveal spatial detail (Hilker et al., 2009). These data, however, fail to 265 

comprehend the temporal dimension of burn severity. Moreover, the magnitude of change 266 

measured with the traditional Landsat dNBR highly depends on assessment timing (Key, 2006; 267 

Veraverbeke et al., 2010c). Allen and Sorbel (2008), for example, found that initial and extended 268 

assessments produced significantly different information with regards to burn severity for tundra 269 

vegetation, while the timing of the assessment had no effect for back spruce forest, which was 270 

attributed to the rapid tundra recovery. Verbyla et al. (2008) reported a seasonality effect that 271 

resulted in large dissimilarities in dNBR values for only slightly differing assessment timings, 272 

probably due to a combined effect of senescing vegetation and changing illumination conditions. 273 

Veraverbeke et al. (2010b) illustrated the necessity to correct for illumination effects, also in a 274 

ratio-based NBR analysis, because these effects affected the performance of the dNBR, even for 275 

bi-temporal acquisitions schemes that only slightly deviated from the ideal anniversary date 276 

scheme. This timing constraint potentially hampers the comparison of Landsat dNBR estimates 277 

across region and time (Eidenshink et al., 2007; Verbyla et al., 2008). If the period of the 278 

dNBRMT‘s integration remains the same for different fires, the multi-temporal approach truly has 279 

the potential to allow a better comparison of burn severity either in time or space. Thus, where 280 

fine resolution Landsat studies allow revealing high spatial detail, which is favorable for regional 281 

studies, their usage is limited due cloud cover problems (Ju and Roy, 2008) and difficulties in 282 

image-to-image normalization (Coppin et al., 2004; Verbyla et al., 2008; Veraverbeke et al., 283 

2010b). Therefore, the high temporal frequency of coarse resolution imagery can either be a vital 284 



14 

complement to traditional Landsat dNBR mapping of specific fires or an imperative alternative 285 

for the assessment of burn severity at continental to global scales. 286 

6 Conclusions 287 

In this study a multi-temporal method to assess burn severity of the 2007 Peloponnese (Greece) 288 

wildfires has been proposed. The approach introduces an alternative for traditional Landsat 289 

dNBR mapping, which can be constrained due to cloud cover and image-to-image normalization 290 

difficulties. The method is based on coarse spatial resolution with high temporal frequency 291 

MODIS imagery. MODIS’s daily MIR and NIR reflectance products were first composited in 8-292 

day periods and missing values were replaced. Subsequently, for each burned pixel a unique 293 

control pixel has been retrieved based on time series similarity and spatial context. The dNBRMT 294 

was then calculated as the one-year post-fire integrated difference between the NBR of the 295 

control and burned pixels, averaged by the total number of observations. dNBRMT estimates 296 

reflect the change in vegetation productivity caused by the fire. This change is clearly higher for 297 

forests than for shrub lands. By integrating over time, dNBRMT estimates account for both the 298 

direct fire impact and ecosystem responses. As such the dNBRMT is more tightly connected to the 299 

definition of burn severity compared to traditional bi-temporal Landsat dNBR mapping. dNBRMT 300 

estimates correlated reasonably well with the downsampled Landsat dNBR, which on its turn 301 

showed a moderate-high correlation with GeoCBI field data. Although Landsat dNBR is superior 302 

for spatial detail in regional scale studies, the dNBRMT presents a valuable alternative for burn 303 

severity mapping at a regional to global scale. The approach also has potential to enhance 304 

comparability of different fires across regions and time. 305 
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Figure 1. Schematic representation of post-fire effects terminology (Veraverbeke et al. 2010a). 415 

Figure 2. Pre-fire land cover types of the burned areas (Veraverbeke et al., 2010a). The locations of the example 416 

pixels shown in figure 7 are also indicated (A-H). 417 

Figure 3. Principle of the multi-temporal dNBR (dNBRMT). The dNBRMT represents the averaged integrated 418 

difference between the one-year post fire NBR time series of the control and focal pixels, as shown in the figure by 419 

the shaded area. 420 

Figure 4. MODIS dNBRMT map (A), subset MODIS dNBRMT map of the blue rectangle in A (B), Landsat dNBR 421 

map (C) and subset Landsat dNBR map of the blue rectangle in C (D). The locations of the example pixels shown in 422 

figure 7 are also indicated in A. 423 

Figure 5. Scatter plot and regression line between Landsat dNBR and GeoCBI (A) and between MODIS dNBRMT 424 

and Landsat dNBT (B) (n = 150, p<0.001). The vertical bars in B indicate the standard deviation of Landsat pixels 425 

within one MODIS pixel. 426 

Figure 6. Mean dNBRMT and standard deviation per land cover type. 427 

Figure 7. Illustration of dNBRMT estimates (shaded area) for coniferous forest (A-B), shrub land (C-D), olive groves 428 

(E-F) and broadleaved forest (G-H). The location of the pixels is given in figures 2 and 4A. 429 


