845 research outputs found

    Unary Primitive Recursive Functions

    Full text link
    In this article, we study some new characterizations of primitive recursive functions based on restricted forms of primitive recursion, improving the pioneering work of R. M. Robinson and M. D. Gladstone in this area. We reduce certain recursion schemes (mixed/pure iteration without parameters) and we characterize one-argument primitive recursive functions as the closure under substitution and iteration of certain optimal sets

    Spin Waves in Striped Phases

    Get PDF
    In many antiferromagnetic, quasi-two-dimensional materials, doping with holes leads to "stripe" phases, in which the holes congregate along antiphase domain walls in the otherwise antiferromagnetic texture. Using a suitably parametrized two-dimensional Heisenberg model on a square lattice, we study the spin wave spectra of well-ordered spin stripes, comparing bond-centered antiphase domain walls to site-centered antiphase domain walls for a range of spacings between the stripes and for stripes both aligned with the lattice ("vertical") and oriented along the diagonals of the lattice ("diagonal"). Our results establish that there are qualitative differences between the expected neutron scattering responses for the bond-centered and site-centered cases. In particular, bond-centered stripes of odd spacing generically exhibit more elastic peaks than their site-centered counterparts. For inelastic scattering, we find that bond-centered stripes produce more spin wave bands than site-centered stripes of the same spacing and that bond-centered stripes produce rather isotropic low energy spin wave cones for a large range of parameters, despite local microscopic anisotropy. We find that extra scattering intensity due to the crossing of spin wave modes (which may be linked to the "resonance peak" in the cuprates) is more likely for diagonal stripes, whether site- or bond-centered, whereas spin wave bands generically repel, rather than cross, when stripes are vertical.Comment: 12 pages, 12 figures, for some high-res.pics, see http://physics.bu.edu/~yaodx/spinwave/spinw.htm

    1995 General Correspondence Related to Proposals, DWC Awards Nominations, and other Memorandums.

    Get PDF
    Primarily correspondence between DWC chairs and members of the Executive Board, Committees and Task Force

    From circular paths to elliptic orbits: A geometric approach to Kepler's motion

    Get PDF
    The hodograph, i.e. the path traced by a body in velocity space, was introduced by Hamilton in 1846 as an alternative for studying certain dynamical problems. The hodograph of the Kepler problem was then investigated and shown to be a circle, it was next used to investigate some other properties of the motion. We here propose a new method for tracing the hodograph and the corresponding configuration space orbit in Kepler's problem starting from the initial conditions given and trying to use no more than the methods of synthetic geometry in a sort of Newtonian approach. All of our geometric constructions require straight edge and compass only.Comment: 9 pages, 4 figure

    Appointments, pay and performance in UK boardrooms by gender

    Get PDF
    This article uses UK data to examine issues regarding the scarcity of women in boardroom positions. The article examines appointments, pay and any associated productivity effects deriving from increased diversity. Evidence of gender-bias in the appointment of women as non-executive directors is found together with mixed evidence of discrimination in wages or fees paid. However, the article finds no support for the argument that gender diverse boards enhance corporate performance. Proposals in favour of greater board diversity may be best structured around the moral value of diversity, rather than with reference to an expectation of improved company performance

    Many Body Theory of Charge Transfer in Hyperthermal Atomic Scattering

    Full text link
    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wavefunction in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals and negative ions. The full set of equations of motion are integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5 to 1600 eV constrain the theory quantitatively. The neutralization probability of Na+^+ ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K+^+, which shows ... (7 figures, not included. Figure requests: [email protected])Comment: 43 pages, plain TeX, BUP-JBM-
    corecore