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Spin waves in striped phases
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IDepartment of Physics, Purdue University, West Lafayette, Indiana 47907, USA
’Department of Physics and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
(Received 3 February 2004; published 11 August 2004

In many antiferromagnetic, quasi-two-dimensional materials, doping with holes leads to “stripe” phases, in
which the holes congregate along antiphase domain walls in the otherwise antiferromagnetic texture. Using a
suitably parametrized two-dimensional Heisenberg model on a square lattice, we study the spin wave spectra
of well-ordered spin stripes, comparing bond-centered antiphase domain walls to site-centered antiphase do-
main walls for a range of spacings between the stripes and for stripes both aligned with the“\atitbeal”)
and oriented along the diagonals of the lattitdiagonal”). Our results establish that there are qualitative
differences between the expected neutron scattering responses for the bond-centered and site-centered cases. In
particular, bond-centered stripes of odd spacing generically exhibit more elastic peaks than their site-centered
counterparts. For inelastic scattering, we find that bond-centered stripes produce more spin wave bands than
site-centered stripes of the same spacing and that bond-centered stripes produce rather isotropic low energy
spin wave cones for a large range of parameters, despite local microscopic anisotropy. We find that extra
scattering intensity due to the crossing of spin wave madésch may be linked to the “resonance peak” in
the cupratesis more likely for diagonal stripes, whether site- or bond-centered, whereas spin wave bands
generically repel, rather than cross, when stripes are vertical.

DOI: 10.1103/PhysRevB.70.064505 PACS nuni®er74.72—h, 75.30.Ds, 76.56:g, 75.10.Jm

[. INTRODUCTION signal at the antiferromagnetic peéd, 7). Rather, satellite
peaks are observed aroufit, ), at a distance determined

Many doped strongly correlated materials exhibit evi-by the spacing between domain walls. When the domain
dence for an emergent length scale in the form of “stripes,ivalls are site-centered, all couplings are antiferromagnetic,
i.e., regular antpihase domain walls in an otherwise antiferincluding couplings across the domain walls. Bond-centered
romagnetic texture. The strongest evidence for striped structomain walls, however, have some ferromagnetic
tures in nickelate perovskites and some related cuprates hasuplingst’ That is, bond-centered configurations consist of
come from neutron scatterig} which is capable of detect- antiferromagnetic patches which aréerromagnetically
ing the spin texture directly through diffraction. Since sev-coupled across the domain wall. As shown in Fig. 1, we
eral theories of high temperature superconductivity makeonsider stripes aligned with the lattice directioralled
contact with such structurés;? it is important to improve  “vertical stripes) or aligned along the lattice diagonals
our microscopic picture of them. In particular, it is not yet (called “diagonal stripeg’
known from experiment whether the antiphase domain walls In this article we focus on the spin wave spectra and ex-
sit primarily on nickel(coppej sites, or rather sit primarily pected magnetic scattering intensities of bond-centered and
on oxygen sites. site-centered stripe phases of various spacings and orienta-

When undoped, the nickel-oxyggand copper-oxygen tions. Other stripe phases are certainly possible, such as
planes in these materials are antiferromagnetic, with spiphases which mix site- and bond-centered domain walls, or
moments localized on the NCu) sites, as evidenced by a phases in which the spacing of the antiphase domain walls is
peak in elastic neutron scattering(at, ).** Upon hole dop-  not commensurate with the underlying lattice, or “dynamic”
ing, this peak is observed to split into fogor perhaps stripes!® which fluctuate in time. We will not consider these
two'419 “incommensurate peak3® indicating an extra cases here, but focus on well-ordered spin stripes which have
modulation on top of the antiferromagnetic wavelength. Formpurely site- or bond-centered domain walls. As we will show
the case of collinear spins, this is consistent with the formabelow, there are qualitative differences between the spin
tion of periodic antiphase domain walls in the antiferromag-wave spectra of bond- and site-centered domain walls, indi-
netic texture(i.e., stripes. cating that in some cases inelastic neutron scattering may be

On a two-dimensional square lattice, these domains corable to distinguish between the two. In addition, there is a
sist of a strip of antiferromagnet with spin up on, say, thedifference in the number of peaks in the elastic spin structure
“A” sublattice, separated by a domain wall from a strip of factor for odd stripe spacings, indicating that elastic neutron
antiferromagnet with spin up on the “B” sublattice, and soscattering alone may be able to distinguish as well.
on, as in Fig. 1. The figures necessarily depict a certain width
for each antiphase domain wall, but the widths are not
known and are in reality likely less sharp than shown in the
figure. In both cases, neighboring antiferromagnetic patches We consider static, ordered arrays of antiphase domain
have spin up on opposite sublattices, which washes out anyalls in an otherwise antiferromagnetic texture. Although the

1. MODEL
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FIG. 1. (Color onling (a) Site-centered vertical stripe pattern wiplr4 lattice constants between domain walls. In this configuration,
exchange couplingd,>0 andJ,>0 are all antiferromagneti¢b) Bond-centered vertical stripe pattern with spacpwg. The exchange
coupling J,>0 is antiferromagnetic, whild, <0 is ferromagnetic(c) Diagonal site-centered domain walls have coupligg-0 for next
nearest neighbor spins coupled across the domain wall along the vézi@rand (0,2), and couplingd.>0 diagonally to “Manhattan”
second neighbors across the domain walls along the vétthr in units where the square lattice spacawgl. (d) Diagonal bond-centered
domain walls have nearest neighbor ferromagnetic cougljrg0 across the domain wall. The size of each figure has been chosen for visual
clarity.

domain walls collect charg¥; 22 we neglect this charge magneticallycoupled, and we havé, ,,=J,<0 across the
component, as we are interested solely in the response of tlimmain wall. Nearest neighbor exchange couplings within
spin degrees of freedom. We use a Heisenberg model oneach antiferromagnetic patch remain antiferromagnetic,

two-dimensional square lattice: Jr r7=J,>0. We shall see that this ferromagnetic coupliigg
1 of spins across the domain wall leads to distinctive features
H== I oSS, (1)  forthe sp!n waves in the' bond—cgntert_ed case.
2.0 We define the magnetic Bravais lattice as folldittet p

denote the distance between domain walls. We will hence-

where(r,r’) runs over all spin sites, and the exchange couforth work in units where the square lattice spacirgl. For
pling is J; . Within an antiferromagnetic patch, nearestp=odd we choose the basis vectors;=(p,0) and A,
neighbor couplings are antiferromagnetic witfy,=J,>0. =(0,2), and forp=even we useA;=(p,1) andA,=(0,2).
Couplings across a domain wall depend upon the configura=or site-centered configurations, there Bre2p sites within
tion and are enumerated below. All other couplings are negach unit cell which include(®-1) spins and 2 sites with no
glected. When comparing to the nickel oxid@®pper ox-  static spin component. For bond-centered domain walls,
ides, our lattice corresponds to the nick@oppej sites  ipere areN=2p spins in each unit cel(See Fig. 2.
within the nickel-oxyger(copper-oxygenplanes. We use the notation Band VBp to refer to vertical
stripes of spacing in a site(S)- or bond(B)-centered con-
figuration, respectively. For example, VS3 refers to a vertical
site-centered configuration with spacipg3 between do-

We consider first the case where stripes run parallel to thenain walls.
Ni-O (Cu-O) bond direction; we call these “vertical” stripes.
As illustrated in Fig. 1, when the domain wall is centered on
a lattice site, we may describe the system as having no net
spin on the domain waf® In this case, spins from the edges  For diagonal stripes, the antiphase domain walls are ori-
of neighboring antiferromagnetic patches are coupled acrosnted along thé€l, +1) direction in a square lattic&ecall
the domain wallantiferromagnetically J; ;»=J,>0 with S, we have set the lattice spacirg-1). For the same micro-
=0 on the domain wall, as illustrated in Figal Within the  scopic interaction strengttigeriving J, .- from, e.g., a Hub-
antiferromagnetic patches, nearest neighbor spins are d&fard mode), spins are more strongly coupled across the do-
course also antiferromagnetically coupled,,,=J,>0. main wall than in the vertical case. For example, with
When, however, the domain wall is bond-centered—that isdiagonal bond-centered stripes, each spin neighboring the
situated between two sites as in Figbyt—spins from the domain wall interacts withwo nearest neighbaiferromag-
edges of neighboring antiferromagnetic patches fareo-  netically couplegl spins across the domain wall, as shown in

A. Vertical stripes

B. Diagonal stripes
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Fig. 1(d). Contrast this with the vertical stripes of Figgajl  field.?® The rate of change of the spin at positioris de-

and Xb), where each spin neighboring a domain wall inter-scribed by

acts with only one spin across the domain wall. Diagonal d

site-centered stripes are even more strongly coupled, with ﬁ_sf: e X Hfff 2)

two different types of interactions across the domain wall, dt

one of which we label,, because it connects spins along a

bond direction[connecting spins along the vect@g0) and

(0,2) across the domain walland the other we labé|, [con-

necting spins along the vect@t,1) across the domain waJl

as shown in Fig. ). M =~ OueS
For diagonal stripes, the magnetic Bravais lattice differs

from the vertical case. Fqu=o0dd spacing between domain

whereu, andH®'" are, respectively, the corresponding mag-
netic moment and effective magnetic field at positigrde-
fined by

walls, we choose the basis vectoss;=(p,0) and A, HP''= g 2Jrr S 3)
=(-1,1), and for p=even we use A;=(2p,0) Br

andA,=(-1,1). For site-centered configurations, wheris Within our model, Eq(1), the torque equations become
even there ardN=2p sites within each unit cell which in-

cludes 2Zp-1) spins and 2 sites with no static spin compo- d_Sf —-_= 3/2 3 S - SEE 39,

nent, and wheip is odd, there ar&l=p sites within each unit ( o o )

cell, which includesp—-1 spins, and one empty site. For
bond-centered domain walls, there &fe2p spins in each d3/
unit cell whenp is even, and there afé=p spins in the unit —=- —(S?E IS - SfE IS )
cell whenp is odd.(See Fig. 7.
We use the notation OBand DBp to refer to diagonal

stripes of spacing in a site(S)- or bond(B)-centered con- ds
figuration, respectively. T 0, (4)
where we have assumed lar§eand small oscillations, so
IIl. SPIN WAVE THEORY that changes il can be neglected. We seek solutions of the
The elementary excitations of ordered spin textures ma)fprm
be studied using the well-known technique of Holstein- S=Sexdi(k-r-wt)],
Primakoff bosons. The same dispersion is obtained by quan-
tizing the classical spin waves, and the methods are equiva- Y=g exdi(k - r - ob)] (5)

lent asS— . We use each description when convenient. As
it is physically more transparent, we review here the lattewherei labels spins within the unit cell, i.e.71,2,... N; N
method?® discussing the former in Appendix A. is the total number of spins in the unit celi=(k,,ky), and

In the classical spin wave approach, each spin is treated as(r,,r,). Setting the determinant of the coefficients $f
precessing in the effective field produced by its coupledand § to zero yields the dispersion relations for the spin
neighbors, via the torque equations of a spin in a magnetigvave.
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We calculate the zero-temperature dynamic structure fac-
tor using Holstein-Primakoff bosons: O \l/

o 1 v O|f(n)

Sk,w) =2 > [fSK)0)26(w - w). (6)

f i=xy,z

Here|0) is the magnon vacuum state diidenotes the final
state of the spin system with excitation enekgy SinceS$ O 1‘
does not change the number of magnons, it leads to the elas-
tic part of the structure factor. Single magnon excitations

contribute to the inelastic response througftk) and (k). (@) g(

IV. RESULTS FOR VERTICAL STRIPES
v vy vy

We begin with our results for ordered, vertical stripe
phases. We discuss magnon excitation energies as functions | 4 4 A r A f(n)
of momentum, the dynamic spin structure factors, the elastic
response, the velocities of the acoustic bands, and analytic \1’ \1’ \1’ ‘1' \1’ \1,
results for dispersion relations for small unit cell sizes. Fig-
ure 2 shows schematic representations of vertical stripes that
are site- and bond-centered, with both even and odd spacing. rA (N r A
In this figure(in contrast to Fig. Lwe have used the length
of the arrow to represent the net spin on a site. The net spin

is expected to be smaller near domain wadls it is always (b) g(m)
zero on a domain wall Our zero frequency results incorpo-
rate this general form factor. For the finiégeresults, we use FIG. 3. (Color onling Schematic representation of vertical

a form factor with the same net spin on each occupied sitéstripes withp=odd widths, indicating the pattern of the functions
g(m) andf(n). Note that for the bond-centered case with odd stripe
spacings, the functiofin) can have a net magnetization, producing

A. Elastic peak at(0,m) elastic weight at the peal0, ).

Elastic neutron scattering can in principle detect one im-
portant qualitative difference between bond- and site-

centered stripes. For odd stripe spacings, both bond- and (da) =S @k Km0, 0)
el

m,n

site-centered stripes have magnetic reciprocal lattice vectors 40
at (0,7). However, site-centered stripes are forbidden from
producing weight at(0,#), whereas bond-centered stripes i’

generically show weight at this point. This is related to the = > énM cogmm) ) A Y, gkangl(mifpin
discrete Fourier transform of the spin structure. Taking ad- m j=0 n

vantage of the antiferromagnetic long range order in one di- i’

rection and the finite spacing between stripes in the other, we —

can describe the spin F;truchure in real spgce by a function = Ninl 8, 5km"”)j§)Aj§ Nadc,-2rirp- (9)

‘ We emphasize that this expression allowsdny form factor
i’ _ _ and is not restricted to configurations where each occupied
SHn,m) = COS{TFm)Z A, g@mPin (7)  site has a full quantum of spin. In the case where each occu-
1=0 pied site has the same net spin, the ratio of intensity at the
main peaks(w+/p, ) to that at(0,7) is 2 in the VB3
case, and 2.6 in the VB5 case. Site-centered stripes always
=f(mg(m), ®)  have A;=0, while A, is generically nonzero for bond-
centered stripesgalthough it can be fine-tuned to zgrd\
wherem is the discretg coordinate parallel to the stripes, ~ finite j=0 term produces elastic weight (@, ). This can be
is the discretex coordinate perpendicular to them, and whereunderstood heuristically from considering the functign),
j’=p—1 for p odd, withj’=2p-1 for p even. The functions shown schematically for the VB5 case in Fig. 3. Odd-spacing
f(n) andg(m) are shown schematically in Fig. 3. The elastic bond-centered stripes generically have a net magnetization in
scattering cross section is proportional to the Fourier transthe function f(n), while symmetry forbids this for site-
form of SX(n, m):26 centered stripes.
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B. Analytic results for small p

For smallp, which corresponds to small unit cell sizes,

PHYSICAL REVIEW BO, 064505(2004

3
v, — \/;UA,:. (19

we can obtain analytic results for the dispersion relation of

the acoustic mode. For the case VS3, we find

Wys3 2
( ) =4(A+1)+C—- 40\ + 1D, (10)
JaS
where
J
A= |22,
Ja

C = 2)f(3k,) + 8f(k,) — 4f4(k,),

2\ (3k,)
D=1|1-f(k 1-——= 11
=)l 2= (11
and the functiorf is defined as
f(X) =1 — cogx). (12

Thatv, saturates with large is in contrast to the behavior

of site-centered cases and can lead to rather isotropic spin
wave cones for the bond-centered ci$elespite local mi-
croscopic anisotropy. As discussed in the next section, for
bond-centered stripes with any spacimgy, is independent

of N andv | saturates with larga.

C. Numerical results

For most values of the stripe spacipg the spin wave
matrices are sufficiently large that one must use numerical
diagonalizations to obtain the dispersion relations of the vari-
ous modes. From the corresponding eigenfunctions we can
then also calculate the spectral intengjyoportional to the
dynamic structure factprthat these magnon states would
contribute to the inelastic neutron scattering. Figures 4 and 5
show the calculated dispersion and scattering intensities for
site- and bond-centered vertical stripes of various spacings.

The acoustic spin wave velocity parallel to the stripe di-Our results for site-centered stripes are consistent with those
rection (k11y) may be obtained by settink,=0 above, and of Ref. 24. For the site-centered case, bands never cross for

taking k,<1. In this casef(k)=0, f(k,)— 3k, and wyg,
—vylk,|, where

—_—

vy =3VN +3uar, (13

and vAF=2\s"§JaS is the velocity of the pure antiferromagnet
with coupling J, and no antiphase domain walls. The spin
wave velocity perpendicular to the stripe direction may b

similarly obtained:

_32 ha+3
T4 N h+1

(14)

U

For A>1, these approach;LH(3/\s’§)\s’XuAF and v,
— (/2 VN vpe.

N <1. At the critical couplings.=1 and\=2.5, site-centered
bands appear to cross. Away from these couplings, vertical
site-centered bands generally repel rather than cross\ For
=1, the dispersion is very similar to that of a pure antiferro-
magnet, albeit with different magnetic reciprocal lattice vec-
tors. For any coupling\, as p—, the result for a pure
two-dimensional antiferromagnet is recovered. pancreas-
ing but finite, the number of bands as well as the number of
reciprocal lattice vectors increases. Howeverpas c, all
spectral weight is transferred to the response of a pure anti-
ferromagnet.

Figure 5 shows representative results for vertical bond-
centered antiphase domain walls with spacipg®, 3, and
4. In this case, the critical point where bands appear to touch

For the case VB2, the problem reduces to diagonalizing & at A\.=~0.56 and is at most only weakly dependentpn

4 X 4 matrix, with the result

2

w

( JVZZ) =2(\2+3N+2) +A-2/(\2+ 3\ +2)2+ B
a

(15
where
A=2f(2k,),
B = — 5A%f(4ky) — 4f(k) — 402 + 3N)f(2k,)
- 4f(k)(1 - f(k) + (\2+3\)(1 - f(2k))).  (16)

The spin wave velocities in the case VB2 are

\5
V1= 5 VA (17)
independent of, and
B 3\ (18
LT N o+ 1) OAF

For A>1, we note that , saturatesat

Away from the critical coupling, bands never appear to cross,
but rather level repulsion is observed. There are other notable
differences between the site- and bond-centered cases. For
one thing, for the same spacipg bond-centered configura-
tions yield one more band: site-centered configurations have
p—-1 bands, whereas there apebands for bond-centered
configurations.

A qualitative difference between the two cases is the scal-
ing of the band energies with coupling For site-centered
configurations, all bands increase their energy monotonically
with the coupling ration. This is in contrast with the bond-
centered case, where for lardg only the top band is af-
fected by the ferromagnetic couplinghat is, it increases
linearly with \), but all other bands saturate asis in-
creased. The behavior of the top band can be understood by
considering the spins that are ferromagnetically coupled
across the domain wall. In the top band, these spins precess
7 out of phase with each other, and the dispersion is domi-
nated by the behavior of the effective ferromagnetic dimers,
yielding w— 2|J,|S/% as|Jy| — o, as shown in Appendix B.

An important consequence of the saturation of the lower
bands as\ gets large in the bond-centered cases is that the
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A=0.4 A=1 A=2.5
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FIG. 4. Spin wave spectra and intensities for vertical, site-centered stripes. All spectra are reggrteta a function of the transverse
momentumk,. The frequencyw is in units of J,S. Apparent crossings only occur a1 and\=2.5.

low-energy spin wave velocities alone, and v, cannot V. RESULTS FOR DIAGONAL STRIPES
readily be used to extract the relation between the bare ex-

change couplings, and J,. We explore this point in more for site- and bond-centered domain walls and with even and

detail in the next section. odd spacing. As mentioned in Sec Il B, for a given micro-
In Fig. 6 we present the spin wave velocities perpendicu- P 9. ' 9

lar (v,) and parallel(v;) to the stripe orientation for the scopic model, diagonal siripes are more strongly coupled

acoustiglowes) bands as functions of the couplin constant2cross the domain wall than vertical stripes. In addition,
; ping « there are more parameters to consider for site-centered diag-
ratio A. These are compared to the reference velogity,of

) R onal stripes: we must includé&. as well asJ, (see Fig. 1,
'glli?]gpirzn%nggel:ir\?;?:r?tng’_)wg'Ch is independent of the COU3ince both couplings appear to the same order if derived
While in both the site- and bond-centered cgéégs. §a) from, e.g., @ Hubbard-like model.
and gb), respectivelythe perpendicular velocity depends on
the coupling ratio, in the bond-centered caserapidly satu-
rates to a value close tg for large\. As a consequence, the Like their vertical counterpartshond-centereddiagonal
value of the coupling ratio.=J,/J, cannot be determined stripes can produce new peaks in the elastic response. With
solely by the ratio of the acoustic velocities but requires addiagonal stripes the new weight is physically transparent. For
ditional information, such asr. all bond-centered domain walls, nearest-neighbor spins are
The curves ofv, and v, cross ata=1 for the bond- ferromagnetically coupled across the wall, and in the diago-
centered case, apparently independent fufr the widths we  nal case, nearest neighbor pa@ésng a single domain wall
have studied. The crossing is at most weakly dependept onall have their moments pointing in the same direction, lead-
in the site-centered case, occurring\at2/7 forDS3, and at  ing to a domain wall magnetization. As Fig. 7 illustrates, for
A=0.3 for DS4. For all spacings studied, we find that in thediagonal stripes with evep, adjacent domain walls have
bond-centered case, is independent of the couplingand  alternating signs of the magnetization. But diagonal stripes
thatv | rapidly saturates with large. As p gets larger, both  with odd spacing have the same magnetization direction on
of these velocities approachg. For the VB3 configuration, each domain wall. This generically leads to net ferromag-
v;=0.9,F, independent oh. Notice that the independence netism and a peak &0,0), unless parameters are fine-tuned.
of v, upon\ and the rapid saturation af, as\ becomes In a three-dimensional antiferromagn@ts may happet,
larger than 1 means that bond-centered configurations cang., with weakly coupled planggomain walls are two di-
produce rather isotropic spin wave cofés. mensionalplanal, and this peak appears eithe(@t0,) if

Figure 7 depicts representative diagonal configurations,

A. Elastic peak at (0,0)
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A=0.1 A= 0.56 A=1
5
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2

FIG. 5. Spin wave spectra and intensities for vertical, bond-centered stripes. All spectra are repgyted as a function of the
transverse momentuty. The frequencyw is in units ofJ,S.

the diagonal in-plane stripes lie directly on top of each other

from plane to plangmeaning there is also no net magneti- f(x) = 1 - cosx), (22
zation on a domain wall or at(0,0,0 if the stripes are di-
agonal within a plane and in their correlation from plane to

as in Sec. IV B.
plane.

The dispersion perpendicular to the stripes, alongkhe
=(ky, ky) direction, is then
B. Analytic results for small p

As for the case of vertical stripes discussed in Sec. IV B,

for small p, it is possible to obtain analytic forms for the oKk _ oo . (3K
acoustic dispersion relations for diagonal stripes in both the J.S = V8(2A +1o)| sin 2 ’ (23)
site- and bond-centered cases.
For the case DS3, the analytic dispersion is
which yields for the velocity in that direction
2
w
(f?) / 2 =f(k— k) + N2F(2(k, — Ky)) + 2\ (K — k)
3V2\ + A
+ (N N[ (2K + k) + Fke+2k)]  (20) v, = \—_C UaEs (24)
2\2
+ N[ f(3k,) + f(3ky)], (21 J—
which approachesy | —5V2\ vag for large N, and v,
where\.=|J./J,, and where the functiof is defined as —>§\«“‘)\c vag for large ..
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FIG. 6. Spin wave velocities foa) VS3 and(b) VB3 as a
function of the coupling ratio.. The solid curves in pangh) are
analytic results for VS3 calculated in Sec. IV B. Symbols in bothratio \=|J,/J,], settingJ.=0. (See Fig. 1 for the definitions
(a) and(b) are numerical results. The velocities parallel and perpeny¢ J, andJ,.) Similar results using 4, only model(i.e., with
dicular to the stripe direction are equal to each othenfeR/7 and

A=1 in the site- and bond-centered cases, respectively. Qualitativelgtructures but with critical coupling=1, which is only half
similar behavior is found for other stripe spacings. '

In the parallel directior(k,,—k,), the dispersion becomes

1 w(ky,— k) \?
—<M> =(1+N\+\.+cosk,+ A cog2k)) (25
8\ Js
k
X(1+ 20+ 2\ coskx)sinzax, (26)
which gives
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v =

V(L +AN)(2+ 20+
= “Uar. (27)
2\2

This approaches;— Nvag for large N, andv,— VAc/8 var
for large \..
For the case DB2, the analytic dispersion is

2 [
(%) /2:4)\(1 +N)+A-N/16(1+)\)%+B
a’

(28
where

A= (L-\)f(k— k),

B = - 8(1+\)%(k —Ky) + (2 = f(k— k))[2f(k — k)
— 2f(2k, -~ 2k) — f(3k + k) — f(l +3k)].  (29)

Perpendicular to the stripes, alokg (k,,k,), the velocity is

N
v, = N+ 1UAFa (30)

saturating taw | —var asA> 1. In the directiork = (k,, —k,),
parallel to the stripes, the velocity is

U= 2VN+ Luag. (31)

C. Numerical results

In Fig. 8, we plot the dispersion and intensities for DS3
and DS4 alongk,,k,) for various values of the coupling

J,=0) are reported in Ref. 24. Our results show similar band

of the J. only model.

However, the effects o, andJ. depend upon the direc-
tion in k space. In Fig. 9 we show the effects of varying the
couplingsJ, and J; for two cuts in momentum space for
DS3. For a cut perpendicular to the stripe directidyandJ,
have more or less the same effect, although siljaduples
more spins thad,, it has a more dramatic effect. Increasing
either coupling broadens the bandwidth in a roughly linear
manner with negligible effect on the shape. However, for the

—— > O

©

(d)

S><—— <

Jrlreillto
bl lteit|t
tal | + o T | FIG. 7. (Color onling Diago-
\ o nal site- and bond-centered con-
l TQ‘L T l 1\0‘1’ T figurations, showing even and odd
spacing. Dotted lines denote do-
main walls. Solid parallelograms
AN ‘l' A Pl A ‘l' A denote unit cells.
R A RN
tvy H ) vt
R R
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A= 0.5 A= 1 A= 2

| k=(k k)

a i i

3 e [ |ps3

2 1 y \ ’ f 1 :; v v

1 \ ! {

NER'AR"
| R ; \ A / DS/
: \ /\ /
% V V ¥ 'l % s S

0 0.25 05 0.75 10 0.25 05 0.75 10 0.25 05 0.75 1
Bx
2m

FIG. 8. Dispersion and intensities for DS3 and DS4 al@qgk,), direction withJ,, only. The frequencw is in units ofJ, S. For all plots,
J.=0.

cut (ky, —2k,), we see that the presencegfproduces inflec- dispersion. Rather than the band repulsion observed in the
tion points whenJ.=0, and can produce flat-topped disper- vertical casgexcept at finely tuned values of the coupling
sions if J; is included as well. crossing of optical bands is generic in the bond-centered di-
We show in Fig. 10 the calculated dispersion relations andgigonal case. Note the ability of optical bands to cross, indi-
intensities for the bond-centered diagonal case, for spacingsating a difference in symmetry for the crossing bands. Also
p=2, 3, and 4. As in the vertical case, the number of bands isvident in the dispersion of DB4 is the downturn of the
equal top. A striking difference in the spectra of odd spac- acoustic band atmagnetic reciprocal lattice vectors, twice
ings is seen, as the net ferromagnetism in the system changas many as in the odd cag&ee Sec. Il B.This is expected
the low-energy character of the spin waves from a lineabecause of the doubling of the unit cell necessary to accom-
(antiferromagnetic-likp to a quadratic(ferromagnetic-like ~ modate even spacing. Note, however, that spectral weight is

J,=0.5J,,J,20  J,=0,J,=05J, J,=J.=0.5J,

k=(k k,)

-

.
o
o
.
{:«r .

SNV VY

FIG. 9. Dispersion and intensities for DS3

g k=(k 2k ) along (ky, k,) and (k,,—2k,), directions, compar-
4 o ing the effects ofl, andJ.. The frequencyw is in
3 units of J,S.

R

‘i
4
0 025 05 075 10 025 05 075 10 025 05 075 1

k

X

2
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A=0.1 A=10.5 A=1.0

— DB2

3 \ DB3

N o < . , |DB4
g VAN

v VYV Vv VY VY VIVY Y
0.25 05 0 0.25 0.5 0.75

0 0.25 05 0.75 10 g 15 10
k,
21

FIG. 10. Dispersion and intensities for diagonal bond-centered domain walls @gkg direction, aix=0.1,0.5,1.0, fop=2, 3, and
4. The frequency is in units of J,S.

1

forbidden at these extra reciprocal lattice vectors, includingcouplings\ for which the spin wave velocities parallel and

the (7, ) point. perpendicular to the stripes are nearly equal, while this ap-
In Fig. 11, we plot the spin wave velocities for DS3. proximate isotropy is confined to a narrow range )\ofif

When J, and J. are both finite, there is a wide range of eitherJ, or J. is zero. Figure 12, which presenis anduv;

3

V{vaF

025 05 075 1 125 15 175 2 025 05 075 1 125 15 4175 2 025 05 075 1 125 15 175 2
)“b ;\‘c A‘b - }“c
FIG. 11. Velocities paralle{v;) and perpendendiculdp ,) to the stripe direction, as compareduge, for DS3. In the first panelj;

=0, and the velocities are plotted as a functiomgfJy/J,. In the second panel,=0, and the velocities are plotted as a functior\gf
=J./J,. In the third panelJ,=J., and the velocities are plotted as a functiomgf ..
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tual crossings from near crossings. In the bond-centered case
with large\, the first optical mode has more weight(at, 7)
than the acoustic band, which would tend to leave the weight
near the elastic incommensurate peéks (7/p),w) rather
disconnected from what might be called a “resonance peak”
in this configuration. We also note that our calculations show
that band crossings are more generic in the presence of di-
. agonal stripes than vertical stripes.
g LI The nickelate compound L.g¢Sr, 3:NiO, shows evidence
* s from neutron scattering of diagonal stripes with spagng
+ & =334 As Sr is substituted for La, holes are doped into the
0 NiO, planes. Neutron scattering has been used to map out
0.5 1 15 2 25 3 3.5 4 the acoustic spin wave dispersion for this material. The data
1 reveal rather isotropic spin wave cones, i.e., thatanduv,
FIG. 12. Velocities paralle(v)) and perpendendiculdv,) to are rather similar, with v, ~(1.03£0.06v5r and v,
the stripe direction, as compareduge, for DB4. ~(0.86+0.06vAr,3 Wherev sr is the acoustic spin wave ve-
locity of the undoped antiferromagnet. For the DS3 state, if
we includeonly J, or only J,, we find no coupling strengtk
for which these two relations can be simultaneously satisifed.
The presence of the two couplings together, as shown in Fig.
11 with J,=J., can account for the proper relationship among
the velocities, but only for a small range of rather small
We have shown that for a certain class of nontrivial spincoupling ratio. As a general trend, we find approximate isot-
orderings on a lattice, the spin wave response is sensitive t@py of the spin wave cones to be more robust for bond-
the microscopic placement of the antiphase domain wallscentered stripeén both vertical and diagonal cageand so
Furthermore, even elastic neutron scattering can in principlene might suspect bond-centered stripes could be responsible
distinguish site- from bond-centered for odd stripe spacingsfor the near isotropy of the spin waves in this material. How-
whether vertical or diagonal. ever, as we have shown, the DB3 configuration yields a fer-
While both site- and bond-centered odd width verticalromagnetic spin wave dispersion, which is certainly not sup-
stripe configurations will produce elastic weight at ported by the data.
(m+(m/p),m), only configurations that are phase-shifted In the related compound L&NiO, ;357 signatures of spin
from the site-centered configuratiqe.g., a bond-centered stripes have been detected in neutron scattering. “lIncommen-
configuration are capable of producing weight @, ), and  surate peaks” are observed to persist up to a temperagire
the observation of this peak along with peaks atabove which magnetic peaks indicative of stripe structure
(wmx(ar/p),7) would rule out a site-centered vertical con- can be regained by application of & Ghagnetic field. The

0.75

VANLF
[ ]

0.25

for the case DB4, shows the characteristic saturation of
with large\ for bond-centered stripes.

VI. EXPERIMENTAL IMPLICATIONS

figuration. A similar ferromagnetic peak, i.e.,@&;0), would
rule out site-centered diagonal strigés.

field-induced stripe spacin@oth above and slightly below
T, is smaller than the zero-field stripe spacing observed

Figures 6 and 12 illustrate another important implicationbelow T,. As noted by the author<,the ferrimagnetic re-

for experiments: The transverse spin wave velogityin the

sponse is naturally explained by bond-centered stripes. In the

acoustic bandaturatesfor large\ in the bond-centered case high temperature field-induced stripe phase, the diagonal
for both vertical and diagonal stripes. In fact, all but the topstripes have spacing=3. Our results in Fig. 10 suggest that
band in the bond-centered case saturate and beirmiapen-  this field-induced transition should be accompanied by a dra-
dentof J, for large J,. As noted above, this unfortunately matic change in the low-energy spin wave dispersion, from
means that an estimate af=J,/J, cannot necessarily be linear to quadratic.
discerned directly from the ratio, /v, but requires either We have also shown thaas in the site-centered cd$e
independent knowledge of whether the stripes are site- dhe number of bands in a bond-centered configuration is set
bond-centered, or an appropriate estimate of the bare coly the number of spins in the unit cell, rather than by the
pling (from, e.g.,uap). spacingp. Generally, for both vertical and diagonal stripes,
A prominent piece of phenomenology in the cuprates issite-centered stripes haye—-1) spin wave bands, and bond-
the “resonance peak” observed in neutron scattéin§, centered stripes haye bands. The exception is the case of
which is the presence of extra scattering weight appearing atiagonal site-centered stripes with odd spagingvhich has
(7, ) at finite frequency, typically of order 40 meV. One %(p—l) bands. An experimental consequence of this is that
proposal is that this may be due to spin waves cros¥ify. for a given value ofp, bond-centered stripes hayespin
We note that for vertical stripes, spin waves generically repelvave bands, whereas site-centered stripes have at pnost
and appear to cross only at finely tuned values of the cou-1 bands. Although not yet observed experimentally, this
pling. For site-centered configurations, this corresponds teneans that the upper bands can also be used to distinguish
A=1 and\ = 2.5, while for bond-centered configurations, the site- from bond-centered stripes. Findipdpands along with
critical coupling is neai =~ 0.56. However, a finite energy incommensurate peaks indicative of spagingould rule out
resolution measurement would not be able to distinguish acsite-centered stripes. For diagonal odd width stripes, the
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threshold is even lower. For, e.g., DS3, only one spin wave . 1 e

band is expected, whereas for DB3, we expect to find three H=2 A& (k)ayk) + EE [B;j & (k)aj (k)

bands. The observance of a second bemdegivalently a !y U

spin wave crossingfor diagonalp=3 stripes would rule out + Bu aj(k)a(k)], (A5)

a site-centered configuration. Of course, negative evidence is . T
dicier, and the observance of the smaller number of band¥hereA=A" andB'=B. , , ,
cannot distinguish the two, as it cannot rule out the possibil- 1he quadratic Hamiltonia@AS) can be diagonalized via a

ity that the top band is too faint to be observed. canonical symplectic transformatfénT, b=Ta, using the
bosonic metric

VII. CONCLUSIONS

I 0

In conclusion, we have studied regular arrays of antiphase 7= (0 - ) (A6)
domain walls in two-dimensional Heisenberg antiferromag-
nets and find that their location relative to the lattice, i.e.,wherel is the N X N indentity matrix. This leads to
whether they are site-centered or bond-centered, produces 1
distinct effects which may bg measuraple in a diffraction H(k) = >, [b;(k)wa(k)ba(k)+—wa(k)]. (A7)
probe such as neutron scattering. In particular, arrays of odd- a 2
width, bond-centered antiphase domain walls generically .
produce more elastic peaks than site-centered stripes. In ad- We now co_n5|der_the structure factor. OifyandS’ con-
dition, bond-centered stripes generically produce more ban ibute to the inelastic part of the structure factor. In terms of

than site-centered stripes. We further find that low-energy P bosons,

spin wave velocities are not always directly related to the 1 ., S .

exchange couplings in the model, and in particular for bond- S= S&*+S)= 5( 2 [a (k) +a(k)]

centered configurations, rather isotropic spin wave cones are I€0dd

predicted for a wide range of parameters. + > [a"(K) +a(~ k)]). (A8)
i€even
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APPENDIX A: SPIN-WAVE METHODS !
_ + 2_ 2
We rewrite the Hamiltonian equatidtl) using the ladder B S‘ <l|(§i: aiby )|O> B 32 al*,  (A9)
operators:

1 1 where q; is the ith component of théorthonormalizey ei-
H== 3 = - +5S) . Al genvector|a) of the Hamiltonian using the bosonic metric,
2<r2r,> | S§ Z(Srs' 55 (A1) corresponding to eigenvalue,.

We now replace the spin operators by Holstein-Primakoff APPENDIX B: DIMERIZED SPIN MODEL

2
(HP) boson$ We consider an isolated system of two spins with ferro-

S = \,,%a, S = \ﬂ%af, §=S-a'a, (A2) m_agnetic couplinglp,. I_n th_e grognd state, the two spins are
aligned. When the spins tilt a bit, each produces an effective

for odd sites occupied by a spin up, and field acting on the other. Using the classical spin wave
. = . = . method, we have
S§'=V2Sg, §=V2Sa3, §=-S+a'a, (A3) & 3 ds,
for even sites occupied by a spin down. Herelabels each d_tl == %bSl XS, ot %bsz X S;. (B1)

spin within a unit cell, i.e.j=1,2,... N, whereN is the
number of spins in the unit cell. We use otdo represent Ignoring the change ir8,, the x, y components of the two
S,=1 spins and even i foB,=| spins. We Fourier transform spins satisfy

the bosonic operators via
dS__dS__ %S

ato=+ 3 ade, TR
VN reodd i
d d IS
) o] ®2
ak)=—= > ae™ (A4) t t h
VrGeven i Integrating yieldsS{Y=-S§Y+c, wherec is a constant of in-
Finally, we get the Hamiltonian in momentum space tegration. Since we allow onl§, to have a constant compo-
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nent,c=0. Taking the second derivative 8f, we find which is a harmonic oscillator equation. If we s8f(x,t)
=u(x)€*, we see that the oscillation frequency is
£ as(as_os) v e
dt? Aio\dt dt
JpS _ 1l
== 2SS -9 + 1SS - )] w=257S, (B4
Niss Nis
=-2—=1S-S]=-4-58S, B3 _ .
h? [Si-S] h? S B3 which recovers the largd, limit of Eq. (15).
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