2,271 research outputs found

    Geosciences for Elementary Educators: A Course Assessment

    Get PDF
    Geosciences for Elementary Educators engages future elementary teachers in a hands-on investigation of topics aligned with the third and fifth grade Earth/Space Science and Scientific Inquiry benchmarks of the Oregon Content Standards. The course was designed to develop the content background of elementary teachers within the framework of the science described in the content standards, to provide an opportunity for future teachers to explore the content area in relation to what takes place in the classrooms of elementary schools, and to initiate a community of learners focused on teaching science to elementary students. The course focused on four themes: the classroom teacher as an activity and curriculum developer using diverse resources to keep the content current and alive; the classroom teacher as educator dealing with the diverse backgrounds of students in a developmentally appropriate manner; the classroom teacher as reflective practitioner exploring the links among pedagogy, content, and student learning; and, the classroom teacher as citizen staying current with emerging policy issues and debates that impact education. In a course where process is extremely important, participants are assessed on what they can do with content and process knowledge through preparing lesson plans, presenting lessons in a simulated classroom environment, and developing a portfolio and journal. Lesson plans demonstrate participant understanding of inquiry, using models, deductive and inductive approaches, links between communication skills and content knowledge, and effective use of technology, including the Internet. For each topic, the mixture of demonstration, experimentation, inquiry, and lecture models are explored through investigation, discovery, and analysis

    Generic Continuity of Operations/Continuity of Government Plan for State-Level Transportation Agencies, Research Report 11-01

    Get PDF
    The Homeland Security Presidential Directive 20 (HSPD-20) requires all local, state, tribal and territorial government agencies, and private sector owners of critical infrastructure and key resources (CI/KR) to create a Continuity of Operations/Continuity of Government Plan (COOP/COG). There is planning and training guidance for generic transportation agency COOP/COG work, and the Transportation Research Board has offered guidance for transportation organizations. However, the special concerns of the state-level transportation agency’s (State DOT’s) plan development are not included, notably the responsibilities for the entire State Highway System and the responsibility to support specific essential functions related to the State DOT Director’s role in the Governor’s cabinet. There is also no guidance on where the COOP/COG planning and organizing fits into the National Incident Management System (NIMS) at the local or state-level department or agency. This report covers the research conducted to determine how to integrate COOP/COG into the overall NIMS approach to emergency management, including a connection between the emergency operations center (EOC) and the COOP/COG activity. The first section is a presentation of the research and its findings and analysis. The second section provides training for the EOC staff of a state-level transportation agency, using a hybrid model of FEMA’s ICS and ESF approaches, including a complete set of EOC position checklists, and other training support material. The third section provides training for the COOP/COG Branch staff of a state-level transportation agency, including a set of personnel position descriptions for the COOP/COG Branch members

    Observations of the magnetic field and plasma flow in Jupiter's magnetosheath

    Get PDF
    Large scale (many minutes to 10 hours) magnetic field structures consisting predominantly of nearly north-south field direction were discovered in Jupiter's magnetosheath from the data of Voyagers 1 and 2 and Pioneer 10 during their outbound encounter trajectories. The Voyager 2 data, and that of Voyager 1 to a lesser extent, show evidence of a quasi-period of 10 hours (and occasionally 5 hours) for these structures. The north-south components of the field and plasma velocity were strongly correlated in the outbound magnetosheath as observed by Voyagers 1 and 2, and the components orthogonal to the north-south direction showed weak correlations. For both Voyager encounters the sense (positive and negative) of the north-south correlations were directly related to the direction of the ecliptic plane component of the interplanetary magnetic field using the field and plasma measurements of the non-encountering spacecraft

    ISOPHOT Observations of Narrow-Line Seyfert 1 Galaxies

    Full text link
    Broad infrared spectra (7-200 micrometer) of four NLS1 galaxies, obtained with the imaging photo-polarimeter (ISOPHOT) on board the Infrared Space Observatory (ISO), are presented. The infrared luminosities and temperatures, opacities and sizes of the emitting dust components are derived. A comparison between the observed infrared spectra and the optical emission line fluxes of a sample of 16 NLS1 galaxies suggests that these objects suffer different degrees of dust absorption according to the inclination of the line of sight with respect to the dust distribution.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho

    Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms

    Get PDF
    [1] In late October and early November of 2003, the Sun unleashed a powerful series of events known as the Halloween storms. The coronal mass ejections launched by the Sun produced several severe compressions of the magnetosphere that moved the magnetopause inside of geosynchronous orbit. Such events are of interest to satellite operators, and the ability to predict magnetopause crossings along a given orbit is an important space weather capability. In this paper we compare geosynchronous observations of magnetopause crossings during the Halloween storms to crossings determined from the Lyon-Fedder-Mobarry global magnetohydrodynamic simulation of the magnetosphere as well to predictions of several empirical models of the magnetopause position. We calculate basic statistical information about the predictions as well as several standard skill scores. We find that the current Lyon-Fedder-Mobarry simulation of the storm provides a slightly better prediction of the magnetopause position than the empirical models we examined for the extreme conditions present in this study. While this is not surprising, given that conditions during the Halloween storms were well outside the parameter space of the empirical models, it does point out the need for physics-based models that can predict the effects of the most extreme events that are of significant interest to users of space weather forecasts

    Gene‐specific DNA methylation may mediate atypical antipsychotic‐induced insulin resistance

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134192/1/bdi12422_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134192/2/bdi12422.pd

    The evolution of M 2-9 from 2000 to 2010

    Full text link
    M 2-9, the Butterfly nebula, is an outstanding representative of extreme aspherical flows. It presents unique features such as a pair of high-velocity dusty polar blobs and a mirror-symmetric rotating pattern in the inner lobes. Imaging monitoring of the evolution of the nebula in the past decade is presented. We determine the proper motions of the dusty blobs, which infer a new distance estimate of 1.3+-0.2 kpc, a total nebular size of 0.8 pc, a speed of 147 km/s, and a kinematical age of 2500 yr. The corkscrew geometry of the inner rotating pattern is quantified. Different recombination timescales for different ions explain the observed surface brightness distribution. According to the images taken after 1999, the pattern rotates with a period of 92+-4 yr. On the other hand, the analysis of images taken between 1952 and 1977 measures a faster angular velocity. If the phenomenon were related to orbital motion, this would correspond to a modest orbital eccentricity (e=0.10+-0.05), and a slightly shorter period (86+-5 yr). New features have appeared after 2005 on the west side of the lobes and at the base of the pattern. The geometry and travelling times of the rotating pattern support our previous proposal that the phenomenon is produced by a collimated spray of high velocity particles (jet) from the central source, which excites the walls of the inner cavity of M 2-9, rather than by a ionizing photon beam. The speed of such a jet would be remarkable: between 11000 and 16000 km/s. The rotating-jet scenario may explain the formation and excitation of most of the features observed in the inner nebula, with no need for additional mechanisms, winds, or ionization sources. All properties point to a symbiotic-like interacting binary as the central source of M 2-9.Comment: Accepted for publication on Astronomy and Astrophysics (10 pages, 8 figures

    1ES 1927+654: Persistent and rapid X-ray variability in an AGN with low intrinsic neutral X-ray absorption and narrow optical emission lines

    Full text link
    We present X-ray and optical observations of the X-ray bright AGN 1ES 1927+654. The X-ray observations obtained with ROSAT and Chandra reveal persistent, rapid and large scale variations, as well as steep 0.1-2.4 keV (Gamma = 2.6 +/- 0.3) and 0.3-7.0 keV (Gamma = 2.7 +/- 0.2) spectra. The measured intrinsic neutral X-ray column density is approximately 7e20cm^-2. The X-ray timing properties indicate that the strong variations originate from a region, a few hundred light seconds from the central black hole, typical for type 1 AGN. High quality optical spectroscopy reveals a typical Seyfert 2 spectrum with some host galaxy contamination and no evidence of Fe II multiplets or broad hydrogen Balmer wings. The intrinsic optical extinction derived from the BLR and NLR are A_V >= 3.7 and A_V=1.7, respectively. The X-ray observations give an A_V value of less than 0.58, in contrast to the optical extinction values. We discuss several ideas to explain this apparent difference in classification including partial covering, an underluminous BLR or a high dust to gas ratio.Comment: 8 pages including 10 figures. Accepted for publication in Astronomy and Astrophysic
    corecore