2,226 research outputs found

    Observations of the magnetic field and plasma flow in Jupiter's magnetosheath

    Get PDF
    Large scale (many minutes to 10 hours) magnetic field structures consisting predominantly of nearly north-south field direction were discovered in Jupiter's magnetosheath from the data of Voyagers 1 and 2 and Pioneer 10 during their outbound encounter trajectories. The Voyager 2 data, and that of Voyager 1 to a lesser extent, show evidence of a quasi-period of 10 hours (and occasionally 5 hours) for these structures. The north-south components of the field and plasma velocity were strongly correlated in the outbound magnetosheath as observed by Voyagers 1 and 2, and the components orthogonal to the north-south direction showed weak correlations. For both Voyager encounters the sense (positive and negative) of the north-south correlations were directly related to the direction of the ecliptic plane component of the interplanetary magnetic field using the field and plasma measurements of the non-encountering spacecraft

    High Field de Haas - van Alphen Studies of the Fermi Surfaces of LaMIn5_{5} (M = Co, Rh, Ir)

    Full text link
    We report measurements of the de Haas - van Alphen effect on a series of compounds, LaMIn5_{5} (M = Co, Rh, Ir). The results show that each of the Co and Ir Fermi surfaces (FSs) exhibit some portions that are two dimensional and some portions that are three dimensional. The most two dimensional character is exhibited in LaCoIn5_{5}, less two dimensional behavior is seen in LaIrIn5_{5}, no part of Fermi surface of LaRhIn5_{5} is found to have a two dimensional character. Thus the two dimensionality of portions of the FSs is largely determined by the d character of the energy bands while all of the effective masses remain \leq 1.2. This fact has implications for the causes of the heavy fermion nature of superconductivity and magnetism in the Ce-based compounds having the similar composition and structure. All of the measurements were performed at the National High Magnetic Field Laboratory using either cantilever magnetometry or field modulation methods.Comment: 10 pages, 4 figure

    Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms

    Get PDF
    [1] In late October and early November of 2003, the Sun unleashed a powerful series of events known as the Halloween storms. The coronal mass ejections launched by the Sun produced several severe compressions of the magnetosphere that moved the magnetopause inside of geosynchronous orbit. Such events are of interest to satellite operators, and the ability to predict magnetopause crossings along a given orbit is an important space weather capability. In this paper we compare geosynchronous observations of magnetopause crossings during the Halloween storms to crossings determined from the Lyon-Fedder-Mobarry global magnetohydrodynamic simulation of the magnetosphere as well to predictions of several empirical models of the magnetopause position. We calculate basic statistical information about the predictions as well as several standard skill scores. We find that the current Lyon-Fedder-Mobarry simulation of the storm provides a slightly better prediction of the magnetopause position than the empirical models we examined for the extreme conditions present in this study. While this is not surprising, given that conditions during the Halloween storms were well outside the parameter space of the empirical models, it does point out the need for physics-based models that can predict the effects of the most extreme events that are of significant interest to users of space weather forecasts

    Unusual metamagnetism in CeIrIn5_5

    Full text link
    We report a high field investigation (up to 45 T) of the metamagnetic transition in CeIrIn5_5 with resistivity and de-Haas-van-Alphen (dHvA) effect measurements in the temperature range 0.03-1 K. As the magnetic field is increased the resistivity increases, reaches a maximum at the metamagnetic critical field, and falls precipitously for fields just above the transition, while the amplitude of all measurable dHvA frequencies are significantly attenuated near the metamagnetic critical field. However, the dHvA frequencies and cyclotron masses are not substantially altered by the transition. In the low field state, the resistivity is observed to increase toward low temperatures in a singular fashion, a behavior that is rapidly suppressed above the transition. Instead, in the high field state, the resistivity monotonically increases with temperature with a dependence that is more singular than the iconic Fermi-liquid, temperature-squared, behavior. Both the damping of the dHvA amplitudes and the increased resistivity near the metamagnetic critical field indicate an increased scattering rate for charge carriers consistent with critical fluctuation scattering in proximity to a phase transition. The dHvA amplitudes do not uniformly recover above the critical field, with some hole-like orbits being entirely suppressed at high fields. These changes, taken as a whole, suggest that the metamagnetic transition in CeIrIn5_5 is associated with the polarization and localization of the heaviest of quasiparticles on the hole-like Fermi surface.Comment: 29 pages, 9 figure

    Polarization of Broad Absorption Line QSOs I. A Spectropolarimetric Atlas

    Get PDF
    We present a spectropolarimetric survey of 36 broad absorption line quasi-stellar objects (BAL QSOs). The continuum, absorption trough, and emission line polarization of BAL QSOs yield clues about their structure. We confirm that BAL QSOs are in general more highly polarized than non-BAL QSOs, consistent with a more equatorial viewing direction for the former than the latter. We have identified two new highly-polarized QSOs in our sample (1232+1325 and 1333+2840). The polarization rises weakly to the blue in most objects, perhaps due to scattering and absorption by dust particles. We find that a polarization increase in the BAL troughs is a general property of polarized BAL QSOs, indicating an excess of scattered light relative to direct light, and consistent with the unification of BAL QSOs and non-BAL QSOs. We have also discovered evidence of resonantly scattered photons in the red wing of the C IV broad emission lines of a few objects. In most cases, the broad emission lines have lower polarization and a different position angle than the continuum. The polarization characteristics of low-ionization BAL QSOs are similar to those of high-ionization BAL QSOs, suggesting a similar BAL wind geometry.Comment: 39 pages, 6 figures (20 .gif files), accepted for publication in The Astrophysical Journal Supplement

    The Host Galaxy of the Gamma--Ray Burst 971214

    Get PDF
    We report on Hubble Space Telescope (HST) observations of the host galaxy of GRB 971214, about four months after the burst. The redshift of the proposed host galaxy at z=3.418, combined with optical and radio observations of the burst afterglow, implies the extremely large isotropic energy release from the burst in gamma-rays of approximately 3x10^53 ergs, some two orders of magnitude higher than the previously commonly assumed numbers. The positional offset between the optical transient observed at the Keck telescope and the centroid of the proposed host galaxy in the HST image is 0.14 -+0.07 arcsec. We find no evidence in our deep HST image for a chance foreground galaxy superposed along the line of sight to the proposed host at z=3.418. The morphology and photometric properties of this galaxy, such as the total flux, morphology, radial surface profile and scale length, are typical as compared to other, spectroscopically confirmed z>3 galaxies.Comment: LaTex, 10 pages, 3 figures, accepted to ApJ

    Optical conductivity and superconductivity in LaSb2_2

    Get PDF
    We have measured the resistivity, optical conductivity, and magnetic susceptibility of LaSb2_2 to search for clues as to the cause of the extraordinarily large linear magnetoresistance and to explore the properties of the superconducting state. We find no evidence in the optical conductivity for the formation of a charge density wave state above 20 K despite the highly layered crystal structure. In addition, only small changes to the optical reflectivity with magnetic field are observed indicating that the MR is due to scattering rate, not charge density, variations with field. Although a superconducting ground state was previously reported below a critical temperature of 0.4 K, we observe, at ambient pressure, a fragile superconducting transition with an onset at 2.5 K. In crystalline samples, we find a high degree of variability with a minority of samples displaying a full Meissner fraction below 0.2 K and fluctuations apparent up to 2.5 K. The application of pressure stabilizes the superconducting transition and reduces the anisotropy of the superconducting phase.Comment: 4 pages with 4 figure

    The Radio Afterglow and the Host Galaxy of the X-Ray Rich GRB 981226

    Full text link
    We report the discovery of a radio transient VLA 232937.2-235553, coincident with the proposed X-ray afterglow for the gamma-ray burst GRB 981226. This GRB has the highest ratio of X-ray to gamma-ray fluence of all the GRBs detected by BeppoSAX so far and yet no corresponding optical transient was detected. The radio light curve of VLA 232937.2-235553 is qualitatively similar to that of several other radio afterglows. At the sub-arcsecond position provided by the radio detection, optical imaging reveals an extended R=24.9 mag object, which we identify as the host galaxy of GRB 981226. Afterglow models which invoke a jet-like geometry for the outflow or require an ambient medium with a radial density dependence, such as that produced by a wind from a massive star, are both consistent with the radio data. Furthermore, we show that the observed properties of the radio afterglow can explain the absence of an optical transient without the need for large extinction local to the GRB.Comment: Accepted for publication in the Astrophysical Journal Letters. Thirteen pages. Three Postscript figure

    Fermi Surface Properties of Low Concentration Cex_{x}La1x_{1-x}B6_{6}: dHvA

    Get PDF
    The de Haas-van Alphen effect is used to study angular dependent extremal areas of the Fermi Surfaces (FS) and effective masses of Cex_{x}La1x_{1-x}B6% _{6} alloys for xx between 0 and 0.05. The FS of these alloys was previously observed to be spin polarized at low Ce concentration (xx = 0.05). This work gives the details of the initial development of the topology and spin polarization of the FS from that of unpolarized metallic LaB6_{6} to that of spin polarized heavy Fermion CeB6_{6} .Comment: 7 pages, 9 figures, submitted to PR
    corecore