139 research outputs found
Molecules empowering animals to sense and respond to temperature in changing environments
Adapting behavior to thermal cues is essential for animal growth and survival. Indeed, each and every biological and biochemical process is profoundly affected by temperature and its extremes can cause irreversible damage. Hence, animals have developed thermotransduction mechanisms to detect and encode thermal information in the nervous system and acclimation mechanisms to finely tune their response over different timescales. While temperature-gated TRP channels are the best described class of temperature sensors, recent studies highlight many new candidates, including ionotropic and metabotropic receptors. Here, we review recent findings in vertebrate and invertebrate models, which highlight and substantiate the role of new candidate molecular thermometers and reveal intracellular signaling mechanisms implicated in thermal acclimation at the behavioral and cellular levels
Somatosensory neurons integrate the geometry of skin deformation and mechanotransduction channels to shape touch sensing.
Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in Caenorhabditis elegans (Eastwood et al., 2015), which substituted a single effective channel for the ensemble along the TRNs, this study integrates body mechanics and the spatial recruitment of the various channels. We demonstrate that this model captures mechanical properties of the worm's body and accurately reproduces neural responses to simple stimuli. It also captures responses to complex stimuli featuring non-trivial spatial patterns, like extended or multiple contacts that could not be addressed otherwise. We illustrate the importance of these effects with new experiments revealing that skin-neuron composites respond to pre-indentation with increased currents rather than adapting to persistent stimulation
Mechanosensitive Membrane Proteins: Usual and Unusual Suspects in Mediating Mechanotransduction
This Viewpoint, which accompanies a Special Issue focusing on membrane mechanosensors, discusses unifying and unique features of both established and emerging mechanosensitive (MS) membrane proteins, their distribution across protein families and phyla, and current and future challenges in the study of these important proteins and their partners. MS membrane proteins are essential for tissue development, cellular motion, osmotic homeostasis, and sensing external and self-generated mechanical cues like those responsible for touch and proprioception. Though researchers\u27 attention and this Viewpoint focus on a few famous ion channels that are considered the usual suspects as MS mechanosensors, we also discuss some of the more unusual suspects, such as G-protein coupled receptors. As the field continues to grow, so too will the list of proteins suspected to function as mechanosensors and the diversity of known MS membrane proteins
MEC-2 and MEC-6 in the Caenorhabditis elegans Sensory Mechanotransduction Complex: Auxiliary Subunits that Enable Channel Activity
The ion channel formed by the homologous proteins MEC-4 and MEC-10 forms the core of a sensory mechanotransduction channel in Caenorhabditis elegans. Although the products of other mec genes are key players in the biophysics of transduction, the mechanism by which they contribute to the properties of the channel is unknown. Here, we investigate the role of two auxiliary channel subunits, MEC-2 (stomatin-like) and MEC-6 (paraoxonase-like), by coexpressing them with constitutively active MEC-4/MEC-10 heteromeric channels in Xenopus oocytes. This work extends prior work demonstrating that MEC-2 and MEC-6 synergistically increase macroscopic current. We use single-channel recordings and biochemistry to show that these auxiliary subunits alter function by increasing the number of channels in an active state rather than by dramatically affecting either single-channel properties or surface expression. We also use two-electrode voltage clamp and outside-out macropatch recording to examine the effects of divalent cations and proteases, known regulators of channel family members. Finally, we examine the role of cholesterol binding in the mechanism of MEC-2 action by measuring whole-cell and single-channel currents in MEC-2 mutants deficient in cholesterol binding. We suggest that MEC-2 and MEC-6 play essential roles in modulating both the local membrane environment of MEC-4/MEC-10 channels and the availability of such channels to be gated by force in vivo
Transducing touch in Caenorhabditis elegans
Mechanosensation has been studied for decades, but understanding of its molecular mechanism is only now emerging from studies in Caenorhabditis elegans and Drosophila melanogaster. In both cases, the entry point proved to be genetic screens that allowed molecules needed for mechanosensation to be identified without any prior understanding of the likely components. In C. elegans, genetic screens revealed molecules needed for touch sensation along the body wall and other regions of force sensitivity. Members of two extensive membrane protein families have emerged as candidate sensory mechanotransduction channels: mec-4 and mec-10, which encode amiloride-sensitive channels (ASCs or DEG/ENaCs), and osm-9, which encodes a TRP ion channel. There are roughly 50 other members of these families whose functions in C. elegans are unknown. This article classifies these channels in C. elegans, with an emphasis on insights into their function derived from mutation. We also review the neuronal cell types in which these channels might be expressed and mediate mechanotransduction
Loss of CaMKI function disrupts salt aversive learning in C. elegans
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior is likely advantageous to avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 leads to an altered pattern of sensory- evoked calcium responses that may underlie salt aversive learning. Our study implicates the conserved CaMKI/CMK-1 as an essential cell-autonomous regulator for behavioral plasticity to environmental salt in C. elegans
Intragenic alternative splicing coordination is essential for Caenorhabditis elegans slo-1 gene function
Alternative splicing is critical for diversifying eukaryotic proteomes, but the rules governing and coordinating splicing events among multiple alternate splice sites within individual genes are not well understood. We developed a quantitative PCR-based strategy to quantify the expression of the 12 transcripts encoded by the Caenorhabditis elegans slo-1 gene, containing three alternate splice sites. Using conditional probability-based models, we show that splicing events are coordinated across these sites. Further, we identify a point mutation in an intron adjacent to one alternate splice site that disrupts alternative splicing at all three sites. This mutation leads to aberrant synaptic transmission at the neuromuscular junction. In a genomic survey, we found that a UAAAUC element disrupted by this mutation is enriched in introns flanking alternate exons in genes with multiple alternate splice sites. These results establish that proper coordination of intragenic alternative splicing is essential for normal physiology of slo-1 in vivo and identify putative specialized cis-regulatory elements that regulate the coordination of intragenic alternative splicing
Gain-of-Function Mutations in the MEC-4 DEG/ENaC Sensory Mechanotransduction Channel Alter Gating and Drug Blockade
MEC-4 and MEC-10 are the pore-forming subunits of the sensory mechanotransduction complex that mediates touch sensation in Caenorhabditis elegans (O'Hagan, R., M. Chalfie, and M.B. Goodman. 2005. Nat. Neurosci. 8:43–50). They are members of a large family of ion channel proteins, collectively termed DEG/ENaCs, which are expressed in epithelial cells and neurons. In Xenopus oocytes, MEC-4 can assemble into homomeric channels and coassemble with MEC-10 into heteromeric channels (Goodman, M.B., G.G. Ernstrom, D.S. Chelur, R. O'Hagan, C.A. Yao, and M. Chalfie. 2002. Nature. 415:1039–1042). To gain insight into the structure–function principles that govern gating and drug block, we analyzed the effect of gain-of-function mutations using a combination of two-electrode voltage clamp, single-channel recording, and outside-out macropatches. We found that mutation of A713, the d or degeneration position, to residues larger than cysteine increased macroscopic current, open probability, and open times in homomeric channels, suggesting that bulky residues at this position stabilize open states. Wild-type MEC-10 partially suppressed the effect of such mutations on macroscopic current, suggesting that subunit–subunit interactions regulate open probability. Additional support for this idea is derived from an analysis of macroscopic currents carried by single-mutant and double-mutant heteromeric channels. We also examined blockade by the diuretic amiloride and two related compounds. We found that mutation of A713 to threonine, glycine, or aspartate decreased the affinity of homomeric channels for amiloride. Unlike the increase in open probability, this effect was not related to size of the amino acid side chain, indicating that mutation at this site alters antagonist binding by an independent mechanism. Finally, we present evidence that amiloride block is diffusion limited in DEG/ENaC channels, suggesting that variations in amiloride affinity result from variations in binding energy as opposed to accessibility. We conclude that the d position is part of a key region in the channel functionally and structurally, possibly representing the beginning of a pore-forming domain
- …