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■ Abstract Mechanosensation has been studied for decades, but understanding of
its molecular mechanism is only now emerging from studies inCaenorhabditis ele-
gansandDrosophila melanogaster. In both cases, the entry point proved to be genetic
screens that allowed molecules needed for mechanosensation to be identified without
any prior understanding of the likely components. InC. elegans, genetic screens re-
vealed molecules needed for touch sensation along the body wall and other regions of
force sensitivity. Members of two extensive membrane protein families have emerged
as candidate sensory mechanotransduction channels:mec-4andmec-10, which en-
code amiloride-sensitive channels (ASCs or DEG/ENaCs), andosm-9, which encodes
a TRP ion channel. There are roughly 50 other members of these families whose func-
tions inC. elegansare unknown. This article classifies these channels inC. elegans,
with an emphasis on insights into their function derived from mutation. We also re-
view the neuronal cell types in which these channels might be expressed and mediate
mechanotransduction.

INTRODUCTION

Sensation relies on the ability of specialized receptor cells to generate electri-
cal responses to physical stimulation. Such responses are called receptor poten-
tials and are initiated by transducer molecules that detect physical stimulation
and produce a change in membrane permeability. This review concerns cells and
molecules that sense touch and body movements generated by external forces and
by self-produced movements. Although electrical responses to force were first
measured more than 75 years ago (1, 2), surprisingly little is known about the
molecules that transduce mechanical energy, and even less is known about how
they work. Recent efforts to identify and study these molecules have focused on
animals used for behavioral genetics: nematode worms (Caenorhabditis elegans),
fruit flies (Drosophila melanogaster), and mice. Behavioral genetics in zebrafish
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(Brachydanio rerio) and analysis of nonsyndromic, inherited deafness in humans
also hold the promise of identifying molecules needed for mechanotransduction
in vertebrate hair cells (3, 4). This article reviews behavioral, ultrastructural, and
molecular aspects of mechanosensation inC. elegans, emphasizing prospects for
discovering the molecular events that give rise to the sensation of touch and force
in this simple animal.

As of this writing, all potential mechanotransducer channels identified in nema-
todes and fruit flies are related either to DEG/ENaC channels or to TRP channels
(Table 1). The DEG/ENaC and TRP channel proteins are encoded by large gene
families in worms, flies, and mammals; these proteins form cation-selective chan-
nels that are comparatively insensitive to membrane voltage. The DEG/ENaC
family was named for the first two sub-families identified: degenerins,C. ele-
gansproteins that can mutate to cause cell swelling and degeneration (5, 6, 18)
and epithelial Na+ channels (ENaC) (19, 20). A third sub-family called ASICs
for acid-sensitive ion channels has also been identified (21). Here, we refer to
these proteins as amiloride-sensitive channels or ASCs, a name used by Interpro
(Acc. # IPR001873) (22) that recognizes the fact that all of these ion channels
are blocked by the diuretic, amiloride. The TRP family was named for the first
member identified: aDrosophilaprotein needed for sustained photoreceptor re-
sponses, encoded by thetrp (transient receptor potential) locus (23, 24). Protein
sequence analysis divides TRP channels into six conserved subfamilies (25–27):
three subfamilies, currently denoted as TRPC, TRPV, and TRPM (27, 28), related
to canonical TRP proteins; and three additional subfamilies, TRPN, TRPP, and
TRPML (26, 27), which are more divergent. Some TRP ion channels are polyfunc-
tional proteins, containing both an ion channel domain and an enzymatic domain
(28).

TABLE 1 ASC and TRP ion channels in force sensing

Channel Species Sensory modality Reference

ASC ion channels
MEC-4 C. elegans Touch receptor (5)
MEC-10 C. elegans Touch receptor (6)
UNC-8 C. elegans Proprioceptor (7)
UNC-105 C. elegans Proprioceptor (8)
ASIC2a Mouse Touch (RA receptors) (9)
ASIC3b Mouse Touch (RA & (10)

AM receptors)
Ischemic pain (11)

TRP ion channels
OSM-9 C. elegans Touch receptor (12)
NOMPC Drosophila Touch receptor (13)

(insect type I)

aAlso called BNC1 (14), BNaC1 (15), and MDEG (16).
bAlso called DRASIC (17).
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MODES OF MECHANICAL COUPLING

The simplest transducer complex is composed entirely of a mechanosensitive (MS)
ion channel gated by application of force within the plane of the plasma membrane
(Figure 1a). Many ion channels sense changes in membrane tension (29), but few
ion channels are known to exploit this sensitivity for their cellular function. One
example is the MscL channel ofEscherichia coli, which opens in response to mem-
brane tensions close to the lytic limit (30) and contributes to turgor regulation in
bacteria (31, 32). Sensitivity to membrane tension implies that the closed and open
conformations of MS channels occupy different areas in the plane of the plasma
membrane. Indeed, MscL gating is estimated to involve an in-plane area increase
of 6.5 nm2 (30). The converse also holds: i.e., if the open state occupies a larger
in-plane area than the closed state, then it should be possible to open the channel
by stretching the plasma membrane, provided the force required to open the chan-
nel is less than the bilayer’s lytic limit. Stretch-sensitive MS channels have been
detected in many eukaryotic cells, including sensory neurons. Examples include
some channels of unknown cellular function, such as the tandem pore K+ chan-
nels TREK-1 (33) and TRAAK (34), as well as some with known, nonsensory

Figure 1 Modes of mechanical coupling. (a) Mechano-sensitive channel, gated
by membrane tension. (b) Tethered modes of mechanical coupling. Abbrevia-
tions: ecm, extracellular matrix; pm, plasma membrane; cyto, cytoskeleton.
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functions, including NMDA-gated channels (35) andShakerK+ channels (36).
Thus sensitivity to membrane stretch could reflect the physiological gating stim-
ulus, a side effect of conformational changes associated with gating, or both. In
the absence of independent knowledge of a given channel’s cellular function, it
is impossible to distinguish between these possibilities. Thus sensitivity to mem-
brane stretch is not, by itself, sufficient evidence that a given channel functions as
a sensory mechanotransduction channel.

More complex or tethered models of sensory mechanotransduction hypothesize
that force is converted into displacement of a transducer channel by virtue of rela-
tive movements between external structures in the extracellular matrix (ecm) and
the cytoskeleton (cyto) (Figure 1b). This mechanical model, based on studies of
mechanotransduction in vertebrate hair cells (37, 38), connects the ecm and cyto to
the transducer channel with linkages represented by a spring and a dashpot in par-
allel. To generate displacement of the transducer channel’s gate, the linkages must
differ in their stiffness. Thus differences in the performance of individual touch-
and force-sensitive cells can arise not only from variations in the mechanical sen-
sitivity of the transducer channel itself, but also from variations in mechanical
coupling.

In principle, force can push, pull, shear, or stretch the transducer channel. Mam-
malian hairs and insect bristles transform force and displacement applied across
the body surface into displacement at the base of the hair or bristle, pushing nerve
endings against surrounding structures. Such compression activates neurons that
innervate bristles and campaniform sensilla in insects and is thought to activate
transducer complexes (39, 40). AlthoughC. eleganslacks hairs and bristles, neu-
rons that innervate sensilla arrayed around the worm’s mouth resembleDrosophila
bristle mechanosensory neurons in their ultrastructure. The position of these neu-
rons suggests that they, too, may be activated by compression perpendicular to
the long axis of the sensory cilia. By contrast, sound stretches and compresses
Drosophilasound receptors (scolopidia) parallel to the long axis of the cilium.
Genetic analysis suggests that bristles and scolopidia rely on many of the same
proteins for their function (41), however, despite differences in the mode of me-
chanical coupling (Table 2).

Touch and force sensation have been studied in several metazoans, including
invertebrates such as crayfish, crickets, flies, and spiders, and vertebrates such as
frogs, mice, and humans. Differences in the modes of mechanical coupling com-
plicate efforts to compare the sensitivities of mechanosensory cells. For example,
responses of crayfish stretch receptors are frequently measured as a percentage of
resting length (e.g., Reference 47), whereas responses of insect bristle receptors
are measured as a function of deflection (e.g., Reference 48). Measuring responses
as a function of applied force makes it possible to compare sensitivities. In general,
mechanosensory cells can sense forces over a range of approximately two orders of
magnitude. Absolute sensitivity, however, varies widely (Table 2). Differences in
absolute sensitivity may reflect differences in mechanical coupling, the sensitivity
of the sensory mechanotransduction complex, or both factors.
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TABLE 2 Sensitivities of selected touch- and force-sensitive neurons

Sense organ Species and/or common name F1/2 (mN) Reference

Slit sense organ Cupiennius salei(wandering spider) 0.026 (42)

Cercal thread hairs Acheta domestica(house cricket) 0.18 (39)

Nematocyte Stauridiosarsia producta(hydra) 0.0002 (43)

Stretch receptor Procambarus alleni(crayfish) 0.21 (44)

Muscle spindle Frog 5.28 (1)

Glabrous skin Human 0.54–7.5 (45)

Glabrous skin Mouse 2.8–13.0 (46)

CELLS THAT SENSE FORCE IN C. ELEGANS

On the Natural Environment of C. elegans

Wild C. eleganslive in soil and eat bacteria. They crawl on the damp surfaces of
soil particles, held in place by surface tension produced by thin water films. While
navigating this environment,C. elegansexperiences external forces produced by
surface tension, by colliding with adjacent soil particles and other animals, as well
as internal forces generated by its own movement. Movement is accompanied by
waves of alternating dorsal and ventral muscle contractions (49). Such movements
could activate neuronal and muscle stretch receptors, providing ongoing feedback
for movement control. In the laboratory,C. elegansleave visible, sinusoidal tracks
as they crawl through a bacterial lawn on the surface of an agar plate. Differences
in internal force sensing produced by mutations have been inferred by analyzing
tracks (7). External force sensing is studied by observing how animals respond to
touch along the body wall (gentle and harsh touch) and at the tip of head (nose
touch) and to substrate acceleration (tap). The responses are simple: Adult animals
withdraw from touches and reverse direction in response to tap (50). Gentle touch
also modifies egg laying (51), pharyngeal pumping (52), and resets the defecation
cycle (53).

Figure 2 shows neurons identified as mechanosensory by anatomical crite-
ria (49). In adult hermaphrodites, 22 cells have ciliated sensory endings, 18 of
which are associated with sensory organs or sensilla arrayed around the buc-
cal opening (49, 54, 55). Adult males have 48 additional ciliated sensory neu-
rons that innervate the male tail, hook, post-cloacal sensilla, and spicules (56),
male-specific structures essential for efficient mating. Males have an additional
set of fourfold symmetric cephalic sensilla whose ciliated endings are exposed
to the external environment (55). Upon contact with hermphrodites, males search
for the vulva, insert their spicules, and transfer sperm. Male mating behavior
requires the male-specific sensilla (57), most of which are believed to be mechano-
sensory. Male sensory neurons exposed to the external environment could be poly-
modal, recognizing both physical contact and a chemical signal.
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C. elegansand insect cuticular sensilla share a common anatomical plan
(Figure 2b); they are composed of one or more ciliated sensory dendrites, a socket
cell that joins the sensillum to the hypodermis, and a glial-like sheath cell (54, 55).
Some sensory neurons are encapsulated by the cuticle, whereas others are contained
within a channel open to the external environment. The amphids are the largest
sensilla; each amphid contains 12 sensory neurons, 4 of which are encapsulated,
and 8 of which are exposed to the outside. The 6 non-ciliated mechanosensory cells
extend long, microtubule-filled neurites in close apposition to the animal’s hypo-
dermis and cuticle. These cells are called touch cells because they are needed for the
response to gentle touch along the body wall (52) and are among the best-studied
neurons in theC. elegansnervous system.

Touch Cells

Touch cell neurites are filled with atypical, large-diameter microtubules arrayed
such that their distal ends are in close apposition to the cell membrane (Figure 2c,d).
The junction between these microtubules and the cell membrane was proposed to
be the site of a sensory mechanotransduction complex (58, 59). Laser ablation by
Chalfie et al. (52) revealed that one pair of touch cells (PLML and PLMR) is
responsible for touch sensation along the posterior half of the animal, whereas a
second pair (ALML and ALMR) mediates touch sensation along the anterior half
of the animal together with a third, unpaired cell (AVM). A sixth, unpaired cell
(PVM) has the same ultrastructural features as the other touch cells, but killing
PVM produces no detectable defect in touch sensation (52, 60, 61). When all 6
cells are killed by a laser or by a toxic gene product, animals fail to respond to
gentle touch, but retain the ability to respond to strong stimuli (52, 62). Intact,
wild-type animals can reliably detect 10µN touches, whereas animals lacking
touch cells because of toxic mutations in themec-4gene respond to forces in
excess of>100µN (I. Chin, M.B. Goodman & M. Chalfie, unpublished data).
Such large forces are probably detected by the PVD cells, because killing these
cells in animals that lack touch cell function eliminates harsh touch sensitivity
(62). PVD cells are bipolar neurons with long, undifferentiated neurites that run
along the lateral body wall. Like the 6 touch cells, PVD expresses the MEC-3
LIM homodomain protein (62). Loss ofmec-3 function eliminates sensitivity
to forces up to 2000µN (I. Chin, M.B. Goodman & M. Chalfie, unpublished
data).

ASH and Others

Three classes of ciliated sensory neurons mediate sensitivity to nose touch: ASH,
FLP, and OLQ (70). ASH, FLP, and OLQ innervate distinct sensilla at the tip of
the nose (Figure 2a). The ciliated endings of ASHL/R are in the left and right
amphid sensilla, where they are exposed to the external environment through a
channel in the amphid sheath cell (49). The ASH cells are considered polymodal
sensory neurons because they are needed for the sensation of nose touch (63),
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high osmolarity (64), and noxious chemicals (65). All three types of stimuli evoke
qualitatively similar behaviors: Upon encountering a noxious stimulus, animals
halt forward movement, back up, and then turn away. ASH also contributes to
avoidance of acid pH (66) and toxic concentrations of Cd2+ and Cu2+ (67). In this
way, ASH resembles vertebrate sensory neurons that sense noxious force, heat,
and chemicals in the skin. Like ASH, the FLP cells are bilaterally symmetric, with
sensory endings in the left and right labial sensilla (49). The OLQ cells, by contrast,
are fourfold symmetric, with sensory endings in a set of sensilla distributed around
the mouth (left, dorsal, right, and ventral) (49). Unlike ASH, neither FLP nor OLQ
has sensory endings exposed to the external environment.

CEP, ADE, and PDE

C. eleganshermaphrodites slow their forward motion upon entering a lawn of
bacteria. This basal slowing response requires dopamine and eight putative mecha-
nosensory neurons: the four CEPs, the two ADEs, and the two PDEs (68). Con-
sistent with a role for dopamine in the basal-slowing response, these eight cells
are the only dopaminergic neurons in hermaphrodites (69). The CEP, ADE, and
PDE neurons have ciliated sensory endings embedded in different regions of the
cuticle. The four CEP neurons have sensory endings in the outer labial sensilla,
distributed in a fourfold symmetric pattern around the buccal opening (Figure 2a),
whereas ADE and PDE have sensory endings embedded along lateral midlines
located anteriorly and posteriorly, respectively. Sawin et al. (68) proposed that
CEP, ADE, and PDE mediate basal slowing by sensing the mechanical effects of
crawling through bacteria. The evidence in support of this idea is twofold. First,
the slowing response evoked by bacteria is mimicked by sterile Sephadex G-200
beads, which are unlikely to present a chemical stimulus and are too large to in-
gest (50–100µm). Second, Sephadex-mediated slowing also requires CEP, ADE,
and PDE. In addition, animals with unilateral ablations exhibit the basal-slowing
response only when crawling on the intact, unoperated side.

Other Cells

The IL1 cells are a set of six bipolar neurons that have sensory endings in the
inner labial sensilla and also form neuromuscular junctions. Like ventral cord
motor neurons, the six IL1 cells are interconnected by gap junctions (49). To-
gether with OLQ and the RMD motor neurons, the IL1 cells regulate the rate
of spontaneous foraging (70). The IL1 and OLQ neurons have also been sug-
gested to mediate responses to touch along the dorsal and ventral surface of the
nose.

Male-Specific Sensilla

Approximately half of the male-specific neurons (46 of 87) are ciliated sensory neu-
rons that innervate the male tail, hook, post-cloacal sensilla, and spicules (56, 71).
Thirty-six neurons innervate nine pairs of sensory rays (2 neurons/ray) in the male
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tail. All these neurons have ciliated endings contained within channels, except
for the neurons (which are encapsulated) that innervate ray 6 (56). Rays 1, 5,
and 7 open to the animal’s dorsal side and are necessary for males to recognize
contact with hermaphrodites along this surface (57). Rays 2, 4, and 8 open ven-
trally and appear to act in concert with sensory neurons that innervate the hook,
post-cloacal sensilla, and spicules to recognize hermaphrodite contact along the
ventral surface (57). Two sensory neurons, HOA and HOB, innervate the hook and
contribute to vulva location (57). Four neurons, SPDL/R and SPVL/R, innervate
the spicule (56) and contribute to spicule insertion and sperm release (64). These
sensory neurons are believed to detect the mechanical effects of hermaphrodite
contact, vulva location, and spicule insertion.

Stretch Receptors

Several types ofC. elegansmotor neurons extend long, undifferentiated processes
that run parallel to the animal’s body axis. These regions may function as uncon-
ventional stretch receptors (L. Byerly & R.L. Russell, cited in Reference 49). If
true, then someC. elegansneurons could serve as both sensory neurons and motor
neurons. In the case of the ventral cord motor neurons (VA, DA, VB, and DB),
such stretch receptive regions could encode local body curvature and translate this
signal directly into localized changes in motor activity. Such signals could also
contribute to the generation and maintenance of propagating waves of body flex-
ion by spreading to adjacent body regions through the gap junctions that connect
motor neurons within each class (49). Two additional classes of motor neurons,
SMB and SMD, send processes posteriorly along sub-lateral nerve cords, where
they are ideally situated to monitor bend in the anterior body (49). In males, the
spicule motor neuron (SPC) may also provide proprioceptive information (56).
Thus there are seven classes of motor neurons that could sense stretch during
locomotion.

SENSORY MECHANOTRANSDUCTION
BY ASC COMPLEXES

Reconstituting a Transduction Complex
from C. elegans Touch Cells

Genetic screens for touch-insensitiveC. elegansidentified 12mec(for mechanosen-
sory abnormal) genes needed for the function but not the development of the touch
cells (72, 73). Nearly all these genes have been cloned and characterized. These
genes encode proteins needed to form the specialized cytoskeleton and extracellu-
lar matrix of touch cells, two DEG/ENaC channel proteins, and two cytoplasmic
regulators (Figure 3a). All of the cloned genes are expressed in the touch cells
except formec-5, which is expressed by epidermal cells that envelope touch cell
neurites (74). A loss-of-function mutation in a singlemecgene is sufficient to

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
3.

65
:4

29
-4

52
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

09
/0

8/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



21 Jan 2003 12:20 AR AR177-PH65-18.tex AR177-PH65-18.sgm LaTeX2e(2002/01/18)P1: FHD

TRANSDUCING TOUCH INC. ELEGANS 437

eliminate touch sensitivity, indicating that these genes function non-redundantly
and suggesting that all 12 proteins are needed for touch cell function. Gene in-
teraction studies carried out by Chalfie and colleagues (6, 75) were critical in for-
mulating the first molecular model of a metazoan sensory mechanotransduction
complex.

Efforts to reconstitute this complex in heterologous cells are underway. Thus
far, these studies show that the ASC proteins, MEC-4 and MEC-10, are suffi-
cient to form a heteromeric, amiloride-sensitive Na+ channel (76). The accessory
proteins, MEC-2 and MEC-6, increase current amplitude without affecting the
steady-state surface expression of either MEC-4 or MEC-10 (76, 77). Consistent
with gene interactions in vivo and functional interactions in heterologous cells, all
four proteins appear to bind one another (76, 77).

Other ASC Complexes

Similar complexes may exist inC. elegansmotor neurons (7) and body wall muscle
(8, 78), which are known to express homologs of some, but not all, of the genes
needed for touch cell function (Figure 3b,c). Multidendritic or type II sensory
neurons inDrosophila innervate the larval cuticle and express two ASC genes,
rpk (Ripped Pocket) andppk (Pickpocket), proposed to encode transducer chan-
nels (79). At present, there is no direct evidence that these neurons sense touch
in Drosophilaor that rpk andppk are needed for touch sensation. Nonetheless,
responses to force have been recorded from equivalent neurons inManducalarvae
(80), supporting the idea that type II sensory neurons in insects employ a sim-
ilar touch-transducing complex as the one proposed forC. eleganstouch cells.
ASC complexes might also mediate sensory mechanotransduction proprioceptive
neurons of the tropical wandering spider (Cupiennius salei), because transduction
currents in these neurons are Na+ selective and blocked by amiloride (81).

AMILORIDE-SENSITIVE CHANNELS

ASC proteins assemble as homomultimers or heteromultimers to form non-voltage-
gated, Na+ channels blocked by the diuretic, amiloride. They share a common
topology consisting of two transmembrane domains separated by a long extra-
cellular domain that contains at least two cysteine-rich domains (Figure 4);C.
elegansASC proteins also contain a third, non-conserved cysteine-rich domain.
Structure-function studies of vertebrate ENaCs have identified conserved residues
near the second transmembrane domain important for gating, ion selectivity, and
amiloride blockade (82). These residues are mutated in several alleles of ASC-
encoding genes inC. elegans(domain 4, Figure 4), indicating that they are critical
for ASC function inC. elegans, as well as for channel biophysics and pharma-
cology in heterologous cells. Dominant alleles ofmec-4and deg-1 that cause
cell degeneration encode substitutions of a conserved alanine (indicated in
red); this phenotype led to the hypothesis that the presence of bulky
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side chains produces hyperactive channels (5, 18). Consistent with this idea, in-
troducing bulky moieties at homologous positions in ENaC subunits was found
to increase open probability (Po) (83). A conserved domain in the intracellular
NH2 terminus of ASC proteins is also critical for function (domain 1, Figure
4). A loss-of-function mutation in the homologous region of the humanβENaC
gene is associated with the salt-losing syndrome, PHA1 (84); mutant ENaC chan-
nels exhibit a reducedPo when expressed inXenopusoocytes (85), implicating
this domain in some aspect of channel gating. Recently, it was shown that over-
expressing the NH2 terminus of MEC-4 disrupts touch-sensitivity in wild-type
animals and reduces cell death in animals expressing MEC-4(A713V). Both ef-
fects were eliminated by introducing themec-4(u25) T91I andmec-4(u339) S92F
substitutions into the NH2-terminal fragment, suggesting that these residues may
be involved in protein-protein interactions (86). Although the first transmembrane
domain is poorly conserved among ASC proteins, there is a highly conserved re-
gion nearby (domain 2, Figure 4). Gain-of-function mutations inunc-105alter
a proline residue in this domain (8) and result in hypercontracted animals (87).
Expression of mutant UNC-105 channels inXenopusoocytes showed that theunc-
105(n490) P134S substitution alters channel gating (78). At present, there are no
otherC. elegansmutant alleles that encode amino acid changes in this domain
or any evidence indicating that this domain contributes to gating in vertebrate
ASCs.

The subgroup ofC. elegansASC proteins that includes MEC-4 and MEC-10
(Figure 5) contains an extracellular regulatory domain or ERD (domain 3,
Figure 4). A role for this domain in channel gating was proposed on the basis
of thedeg-1(u506) A393T mutation, which causes cellular degeneration but only
when homozygous. Introduction of the equivalent mutation intomec-4or dele-
tion of nine residues in this domain produced a similar degeneration phenotype
(88), supporting the inference that this domain negatively regulates the channel.
Garcia-Añoveros et al. (88) proposed that this domain could be sensitive to me-
chanical manipulation and provide the molecular substrate for the mechanosen-
sory function of MEC-4 and MEC-10. Interestingly, the ERD is restricted to
a subgroup of sevenC. elgansASC proteins: MEC-4, MEC-10, UNC-8, DEG-1,

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3 ASC channel complexes. (a) Touch cell complex, adapted from Gu et al.
(75). In this model, theecmcontains MEC-5, MEC-9, and possibly MEC-1; the sensory
mechanotransduction channel is formed by MEC-4, MEC-10, and possibly MEC-6;
MEC-2 enhances channel activity and links the channel to specialized microtubules
containing MEC-7/β-tubulin and MEC-12/α-tubulin. (b) Motor neuron stretch receptor
complex. ecm components are not known; channel hypothesized to be formed by
UNC-8, DEL-1, and MEC-6; linked to the cytoskeleton by UNC-1. (c) Muscle stretch
receptor complex. ecm contains LET-2/collagen channel formed by UNC-105; linkers
and cytoskeletal components have not been identified.
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DEL-1, UNC-105, and ZK770.1. It is absent from the vertebrate ASC proteins,
ASIC2 and ASIC3, proposed to contribute to touch sensation in mice (9, 10).
From this analysis, it is tempting to speculate that (a) the ERD could represent a
nematode-specific specialization for mechanical sensitivity and that (b) C. elegans
ASC proteins that form sensory mechanotransduction channels are restricted to this
subgroup.

To learn more about conservation of ASC proteins across species, we searched
proteins predicted from the sequences of two invertebrate genomes (C. elegans
andDrosophila) and three vertebrate genomes (human, mouse, and the Japanese
pufferfish, Fugu rubripes). No genes predicted to encode ASC proteins were
found in theArabdopsis thalianagenome, indicating that ASCs may be ab-
sent from plants. We found 28 and 25 predictedasc genes in the genomes of
C. elegansandDrosophila, respectively. Fewer genes were found in the vertebrate
genomes: 9 in humans, 8 in mouse, and 7 inFugu. Including three FMRF-gated
ASCs identified in mollusks (Helix aspersa, Helisoma trivolvis, and Lymnaea
stagnalis), the ASCs we analyzed fell into six subfamilies (see supplemental
material: follow the Supplemental Material link on the Annual Reviews home-
page at http://annualreviews.org/); three appeared to be nematode-specific (ASC2,
ASC4, and ASC6), one was represented in nematodes, mammals, and fish (ASC3),
one in insects, nematodes, and fish (ASC5), and one in mammals and mollusks
(ASC1). Thus ASC proteins are highly divergent among species. Despite this,
many residues important for ion channel function are conserved across species
(see above).

Approximately two thirds of the 28 predictedC. elegans ascgenes are found on
either the first chromosome (8 genes) or the X chromosome (9 genes). Noascgenes
were detected on the third chromosome. We found two clusters of predictedasc
genes; one located on chromosome I (C24G7.1, C24G7.2, and C24G7.4, map posi-
tion = I:−1.63) and one on chromosome V (Y69H2.13, Y69H2.2, Y69H2.11, map
position= V:19.8). Both clusters encode related ASC proteins; the C24G7 pro-
teins are 22.8% identical, whereas the Y69H2 proteins are 28.4% identical. These

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5 C. elegansASC proteins. ASCs denoted by classical locus names (three-
letter plus number abbreviations) or by molecular sequence names (cosmid name).
Proteins predicted to be encoded by theC. elegansgenome were obtained from
“wormpep81” (104) and scanned for ASC motifs using hidden Markov model (HMM)
searches (HMMER 2.2 g) (105) or position-specific iterated BLAST searches (psi-
BLAST) (106). Global HMMs for ASC families were obtained from PFAM 7.3
(ASC.hmm) (107). psi-BLAST for ASC proteins used residues 444–740 of MEC-
4 as a query sequence. Dendrograms generated by ClustalW 1.82 (108) using full
protein sequences, 10,000 bootstraps, and distance correction. Genomic locations and
cellular expression patterns extracted from WormBase (WS81) (104); data in italics
derived from DNA microarray data (89).
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clusters could represent gene duplication events. TwelveC. elegans ascgenes are
either known to be expressed in neurons (mec-4, mec-10, deg-1, unc-8, del-1) or
clustered with neuronal genes in analyses of DNA microarray experiments (89),
consistent with possible roles for ASC proteins in sensory mechanotransduction
and other aspects of neuron function.

Loss-of-function mutations in the 6ascgenes defined by behavioral genetics
produce either subtle defects or no detectable phenotype (Figure 5). The absence of
a detectable mutant phenotype could indicate that someascgenes function redun-
dantly, perhaps by forming heteromeric channels with other ASC proteins. Theo-
retically, the 28 putative ASC proteins could form 406 distinct ion channels inC. el-
egans(28 homomeric channels and 378 heteromeric channels formed by two ASC
proteins). The actual number of ASC channels formed in vivo is likely to be smaller,
however, owing to distinct expression patterns for each gene and the capacity
of some, but not all, ASC proteins to form homomeric channels. For example,
MEC-4 and MEC-10 are co-expressed in all six touch cells and form heteromeric
channels inXenopusoocytes. In oocytes, MEC-4, but not MEC-10, can form
homomeric channels (76). However, homomeric MEC-4 channels are unlikely
to exist in vivo because every cell that expresses MEC-4 also expresses MEC-
10. MEC-10, by contrast, is expressed in four additional cells (the FLPs and
PVDs) and is likely to associate with one or more additional ASC proteins in these
cells.

SENSORY MECHANOTRANSDUCTION
BY TRP CHANNELS

A TRP Channel (NOMPC) in Drosophila Bristles

Screens forDrosophila larvae with defects in mechanosensation and uncoordi-
nated adults identified several genes that can mutate to produce defects in electri-
cal responses of bristles (90) and in responses to sound (41). Defects in courtship
behaviors (which rely on the flies’ ability to hear) were also observed. One of
these genes,nompC, encodes a TRP channel protein. InnompCmutant flies,
bristle displacement evoked mechanosensory currents that were either∼10% of
their wild-type amplitude or adapted∼fivefold faster than wild-type currents (13).
This study provides the most direct evidence that a TRP channel functions as a
sensory mechanotransduction channel. TheC. elegansortholog of NOMPC, en-
coded by Y71A12B.4 (41% identical), is expressed in CEP and ADE, which are
ciliated mechanosensory neurons needed for the basal slowing response to food
and to Sephadex beads (68). The intracellular NH2 terminals of NOMPC and
Y71A12B.4 contain 29 ankyrin (ANK) repeats, 33-residue motifs that mediate
protein-protein interactions (91). At present, it is not known if either NOMPC or
its C. elegansortholog form ion channels, if these channels are gated by force,
or if the channels are localized to ciliated endings, as expected for a transducer
channel.

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
3.

65
:4

29
-4

52
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

09
/0

8/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



14 Jan 2003 14:6 AR AR177-PH65-18.tex AR177-PH65-18.sgm LaTeX2e(2002/01/18)P1: FHD

TRANSDUCING TOUCH INC. ELEGANS 443

A Polymodal C. elegans TRP

Wild-typeosm-9andocr-2are required for all of the sensory functions of the poly-
modal ASH neurons and the odor-sensing AWA neurons (12, 92). Both OSM-9
and OCR-2 co-localize to ciliated endings in ASH and AWA, where they are likely
to assemble into a single transduction channel (92). How could a single channel
contribute to both chemotransduction and mechanotransduction? A speculative
hypothesis is that the putative OSM-9/OCR-2 channel is activated indirectly by
tightly coupled receptors in ASH and AWA. To ensure rapid activation, the channel
could associate with this hypothetical receptor in a sensory transduction complex,
as proposed for phototransduction inDrosophila(93). Alternatively, the channel
could be gated both by chemical ligands and mechanical force. In any case, be-
havioral analyses ofosm-9andocr-2mutant animals support the idea that a single
TRP channel can subserve multiple sensory functions.

A Sexy TRP

TRP proteins also appear to be critical for normal mating behaviors inC. elegans
males. This complex behavior relies on the function of male-specific sensory neu-
rons that express the TRP proteins, LOV-1 and PKD-2 (94, 95). Mutations inlov-1,
pkd-2, or both genes produced equally severe phenotypes, supporting the idea that
LOV-1 and PKD-2 act together. In addition, both proteins were co-expressed in
the same sensory neurons and concentrated in ciliated endings, where they could
assemble into a single sensory receptor channel.

TRP ION CHANNELS

TRP ion channel proteins share a common predicted topology composed of an
intracellular NH2-termimal domain that can include one or more ANK repeats,
six transmembrane domains, and a poorly conserved, intracellular CO2H-terminal
domain (25, 26, 28). ANK repeats appear to be important for function in vivo be-
causeosm-9(n1516) andosm-9(n2743) affect a glycine residue conserved in the
ankyrin repeats of allC. elegansTRPV proteins (12). Like the ASC proteins, TRP
proteins appear to be absent from plants; none were found in searches of theA.
thaliana genome. By contrast with ASC proteins, all six subfamilies are repre-
sented by predicted protein sequences inC. elegans, Drosophila, Fugu rubripes,
and humans (Table 3). At least one mutation in aC. elegansTRP gene (cup-5)
can be functionally complemented by a transgene expressing its human ortholog,
MCOLN1 (96). This suggests that the six TRP subfamilies were present and had
already developed specific functions, in an ancestor common to both vertebrates
and invertebrates (97). In addition to these conserved families, one subfamily was
detected only in nematodes (Table 3). This last subfamily of channel proteins are
good candidates for mediating nematode-specific biological functions.

Searches of theC. elegansgenome sequence reveal 24 genes predicted to encode
TRP ion channel proteins (Figure 6). Nearly half of these genes are found on
chromosome IV (10 of 23). TRP-encoding genes do not appear in clusters; even the
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TABLE 3 TRP channels inC. elegans, Drosophila, Fugu rubripes, and
Homo sapiens

Caenorhabditis Drosophila Fugu Homo
Subfamily elegans melanogaster rubripes sapiens

TRPC 3 3 8 6

TRPV 5 2 4 6

TRPM 4 1 15 9

TRPN 3 5 1 1

TRPP 2 3 5 5

TRPML 1 1 5 2

C. elegans-specific 6 — — —

Total 24 15 38 29

closely related TRPV genes (osm-9, ocr-1, ocr-2, ocr-3, andocr-4) are distributed
throughout the genome. All of the TRPV genes are expressed in sensory neurons
except for OCR-3 (12, 92). As noted above, OSM-9 and OCR-2 are proposed
to form a sensory transduction channel in AWA and ASH. Similarly, the TRPP
genes,lov-1 andpkd-2, are co-expressed in male-specific sensilla, organs needed
for normal mating behavior (94, 95), and could form a sensory transduction channel
in male-specific sensory neurons. Not all TRP proteins are expressed in neurons.
For example, the TRPML gene,cup-5, is expressed in coelomocytes and appears to
be needed for normal endocytosis and lysosomal function (96, 98).gon-2encodes
a TRPM protein needed for normal gonad development (99). In addition, two TRP
proteins may be expressed in sperm (K01A11.4, C05C12.3), since these genes
cluster with sperm-specific mRNAs in DNA microarray experiments (89). Thus
TRP ion channels are likely to subserve diverse cellular functions inC. elegans.

Almost nothing is known about currents carried byC. elegansTRP channels.
Thus far,trp-dependent ionic currents have not been studied using either in vivo or
in vitro electrical recordings. Nor has ion channel activity been observed for anyC.
elegansTRP channels in heterologous cells. Recent efforts to express OSM-9 and
OCR-2 inXenopusoocytes and HEK-293 cells have not been successful (92). Ge-
netic experiments show that channels formed by these TRPV proteins must differ
from those formed by mammalian TRPV1, since expressing mammalian TRPV1
in ASH failed to restore osmotic sensitivity toosm-9andocr-2 mutants. TRPV1
was functional inC. elegansneurons, however, because this maneuver transformed
wild-type, capsaicin-insensitive animals into animals that avoided capsaicin (92).

SUMMARY AND FUTURE DIRECTIONS

The putative sensory mechanotransduction channels described here would
have been extremely difficult to identify by methods other than classical genetics.
Our understanding of how they work and the extent to which mechanisms of
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mechanotransduction are shared among diverse mechanosensory neurons and con-
served across species is only beginning. Even in a comparatively simple animal
such asC. elegans, mechanosensory neurons differ in their behavioral functions,
morphologies, and ultrastructure. There are several lines of work that should ex-
pand our understanding, andC. elegansis ideally suited for this task.

Many potential, but uncharacterized, sensory transduction channels are en-
coded by theC. elegansgenome; one example, Y71A12B.4, is a strong candidate
for being a mechanoreceptor but has so far been missed by classical genetics. Sys-
tematic determination of channel expression patterns by GFP transgenes, followed
by site-selected deletion mutagenesis, should help to make behavioral functions
clear. However, behavioral analysis alone cannot determine if a given channel acts
as a sensory transducer or if the channel provides an essential function for cellular
signaling following transduction. This important question could be resolved us-
ing in vivo electrical (100) or optical (101) recordings from identifiedC. elegans
neurons. At present, such evidence is lacking even for the well-characterized ASC
complex ofC. eleganstouch cells.

In vertebrate hair cells, transduction occurs extraordinarly rapidly (<100µs)
and is hypothesized to involve direct gating of the transducer channel by force
(38, 102). It is important to remember, however, that direct mechanical gating may
not be universal and that some transducer channels could be activated indirectly. In
either case, the molecular substrates of mechanical gating are unknown. Missense
mutations isolated in genetic screens could prove instructive in this regard, espe-
cially considering that these alterations in amino acid sequence are guaranteed to
produce defects in some aspect of synthesis, trafficking, or function. Single-channel
studies of these mutants hold the promise of discovering molecular determinants
of gating and permeation.

Dissection of the sensory mechanotransduction channel is itself only a starting
point. As discussed above, mechanoreceptor proteins in metazoa are unlikely to
have the simplicity of proteins such asE. coli MscL. They are instead likely to
work as part of intricate protein machines, anchored on both sides of the membrane
to structural elements of the cytoskeleton and extracellular matrix. Strong bases
for identifying such machines inC. eleganstouch cells are the extensive genetic
analyses and transcriptional profiling of these cells (72, 103). Recent studies in
heterologous cells have demonstrated both functional and physical interactions
between MEC-4, MEC-10, MEC-2, and MEC-6 (76, 77). Comparable knowledge
of the potential components of sensory transduction complexes is currently lacking
for other mechanosensory neurons inC. elegans. Efforts to uncover these compo-
nents using classical genetics have been disappointing thus far. As a result, it may
be necessary use alternative approaches such as the determination of mechanosen-
sory neuron-specific gene expression (103). Understanding of the molecular events
that give rise to the sensation of touch is poised to expand in the near future, par-
ticularly through the parallel approaches of in vivo physiology and heterologous
reconstitution studies that rely on genetic data, which have successfully identified
proteins and functional domains critical for mechanosensation.
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Figure 2 Mechanosensory cells ofC. elegans. (a) Anterior sensilla diagrammed in a
cross section near the anterior tip ofC. elegans(left) and positions of mechanosensory
neurons that innervate the sensilla (right). (b) Sensory endings embedded in the cuticle
(left) and open to the outside (right). (c) Touch cells. Diagram, adapted from (59), shows
the left side of an adult animal. (d) Cross section of a touch neurite. (Adapted from
http://www.wormatlas.org.) (e) Sensory rays in the male tale, lateral view. (f ) Male-
specific sensilla, ventral surface of the male tail. Abbreviations: cu, cuticle; So, socket
cell; Sh, sheath cell; hyp, hypodermis; ecm, extracellular matrix; mt, 15-protofilament
microtubules; as, amphid sensillum; ils, inner labial sensillum; cs, cephalic sensillum;
ols, outer labial sensillum.
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Figure 4 Clusters of point mutations in ASCs. Cysteine-rich and transmembrane
domains shown in yellow and red, respectively. Extracellular regulatory domain (blue)
is found in 7 ASC proteins (MEC-4, MEC-10, DEG-1, DEL-1, UNC-8, UNC-105,
and ZK770.1). Residues conserved in vertebrate ASCs highlighted in yellow, inC.
elegansASCs highlighted in blue. Residues implicated in gating and degeneration
(X), amiloride binding (*), and selectivity (bracket). Missense mutations reproduced
from (86) for MEC-4, (6) for MEC-10, (78) for DEG-1, (7) for UNC-8, and (8) for
UNC-105.A
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