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m Abstract Mechanosensation has been studied for decades, but understanding of
its molecular mechanism is only now emerging from studie€aenorhabditis ele-
gansandDrosophila melanogastein both cases, the entry point proved to be genetic
screens that allowed molecules needed for mechanosensation to be identified without
any prior understanding of the likely componentsQnelegansgenetic screens re-
vealed molecules needed for touch sensation along the body wall and other regions of
force sensitivity. Members of two extensive membrane protein families have emerged
as candidate sensory mechanotransduction chammels:4and mec-10 which en-

code amiloride-sensitive channels (ASCs or DEG/ENaCs)pand9 which encodes

a TRP ion channel. There are roughly 50 other members of these families whose func-
tions inC. elegansare unknown. This article classifies these channe(S.islegans

with an emphasis on insights into their function derived from mutation. We also re-
view the neuronal cell types in which these channels might be expressed and mediate
mechanotransduction.

INTRODUCTION

Annu. Rev. Physiol. 2003.65:429-452. Downloaded from arjournals.annualreviews.org
by CALIFORNIA INSTITUTE OF TECHNOLOGY on 09/08/05. For persona use only.

Sensation relies on the ability of specialized receptor cells to generate electri-
cal responses to physical stimulation. Such responses are called receptor poten-
tials and are initiated by transducer molecules that detect physical stimulation
and produce a change in membrane permeability. This review concerns cells and
molecules that sense touch and body movements generated by external forces and
by self-produced movements. Although electrical responses to force were first
measured more than 75 years ago (1, 2), surprisingly little is known about the
molecules that transduce mechanical energy, and even less is known about how
they work. Recent efforts to identify and study these molecules have focused on
animals used for behavioral genetics: nematode wo@asiiorhabditis elegaps

fruit flies (Drosophila melanogastgrand mice. Behavioral genetics in zebrafish
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(Brachydanio rerig and analysis of nonsyndromic, inherited deafness in humans
also hold the promise of identifying molecules needed for mechanotransduction
in vertebrate hair cells (3, 4). This article reviews behavioral, ultrastructural, and
molecular aspects of mechanosensatio@.ielegansemphasizing prospects for
discovering the molecular events that give rise to the sensation of touch and force
in this simple animal.

As of this writing, all potential mechanotransducer channels identified in nema-
todes and fruit flies are related either to DEG/ENaC channels or to TRP channels
(Table 1). The DEG/ENaC and TRP channel proteins are encoded by large gene
families in worms, flies, and mammals; these proteins form cation-selective chan-
nels that are comparatively insensitive to membrane voltage. The DEG/ENaC
family was named for the first two sub-families identified: elegrins,C. ele-
gansproteins that can mutate to cause cell swelling and degeneration (5, 6, 18)
and epithelial Na" channels (ENaC) (19, 20). A third sub-family called ASICs
for acid-sensitive bn channels has also been identified (21). Here, we refer to
these proteins as amiloride-sensitive channels or ASCs, a name used by Interpro
(Acc. # IPR001873) (22) that recognizes the fact that all of these ion channels
are blocked by the diuretic, amiloride. The TRP family was named for the first
member identified: ®rosophilaprotein needed for sustained photoreceptor re-
sponses, encoded by the (transient receptor potentiplocus (23, 24). Protein
sequence analysis divides TRP channels into six conserved subfamilies (25-27):
three subfamilies, currently denoted as TRPC, TRPV, and TRPM (27, 28), related
to canonical TRP proteins; and three additional subfamilies, TRPN, TRPP, and
TRPML (26, 27), which are more divergent. Some TRP ion channels are polyfunc-
tional proteins, containing both an ion channel domain and an enzymatic domain
(28).

TABLE 1 ASC and TRP ion channels in force sensing

Channel Species Sensory modality Reference
ASC ion channels
MEC-4 C. elegans Touch receptor (5)
MEC-10 C. elegans Touch receptor (6)
UNC-8 C. elegans Proprioceptor (7
UNC-105 C. elegans Proprioceptor (8)
ASIC22 Mouse Touch (RA receptors)  (9)
ASIC? Mouse Touch (RA & (10)
AM receptors)
Ischemic pain (11)
TRP ion channels
OSM-9 C. elegans Touch receptor (12)
NOMPC Drosophila  Touch receptor (13)

(insect type I)

@Also called BNC1 (14), BNaCl (15), and MDEG (16).
bAlso called DRASIC (17).
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MODES OF MECHANICAL COUPLING

The simplest transducer complex is composed entirely of a mechanosensitive (MS)
ion channel gated by application of force within the plane of the plasma membrane
(Figure 1a). Many ion channels sense changes in membrane tension (29), but few
ion channels are known to exploit this sensitivity for their cellular function. One
example is the MscL channel BEcherichia coliwhich opens in response to mem-
brane tensions close to the lytic limit (30) and contributes to turgor regulation in
bacteria (31, 32). Sensitivity to membrane tension implies that the closed and open
conformations of MS channels occupy different areas in the plane of the plasma
membrane. Indeed, MscL gating is estimated to involve an in-plane area increase
of 6.5 nnt (30). The converse also holds: i.e., if the open state occupies a larger
in-plane area than the closed state, then it should be possible to open the channel
by stretching the plasma membrane, provided the force required to open the chan-
nel is less than the bilayer’s lytic limit. Stretch-sensitive MS channels have been
detected in many eukaryotic cells, including sensory neurons. Examples include
some channels of unknown cellular function, such as the tandem pooh#h-

nels TREK-1 (33) and TRAAK (34), as well as some with known, nonsensory

a
fabBubY 8888847
b
ecm
R
pm ¢
—
cyto :
push/pull stretch shear

Figure 1 Modes of mechanical couplinggMechano-sensitive channel, gated
by membrane tensionb) Tethered modes of mechanical coupling. Abbrevia-
tions: ecm, extracellular matrix; pm, plasma membrane; cyto, cytoskeleton.
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functions, including NMDA-gated channels (35) aBHakerK™ channels (36).
Thus sensitivity to membrane stretch could reflect the physiological gating stim-
ulus, a side effect of conformational changes associated with gating, or both. In
the absence of independent knowledge of a given channel’s cellular function, it
is impossible to distinguish between these possibilities. Thus sensitivity to mem-
brane stretch is not, by itself, sufficient evidence that a given channel functions as
a sensory mechanotransduction channel.

More complex or tethered models of sensory mechanotransduction hypothesize
that force is converted into displacement of a transducer channel by virtue of rela-
tive movements between external structures in the extracellular matrix (ecm) and
the cytoskeleton (cyto) (Figurébl. This mechanical model, based on studies of
mechanotransduction in vertebrate hair cells (37, 38), connects the ecm and cyto to
the transducer channel with linkages represented by a spring and a dashpot in par-
allel. To generate displacement of the transducer channel’s gate, the linkages must
differ in their stiffness. Thus differences in the performance of individual touch-
and force-sensitive cells can arise not only from variations in the mechanical sen-
sitivity of the transducer channel itself, but also from variations in mechanical
coupling.

In principle, force can push, pull, shear, or stretch the transducer channel. Mam-
malian hairs and insect bristles transform force and displacement applied across
the body surface into displacement at the base of the hair or bristle, pushing nerve
endings against surrounding structures. Such compression activates neurons that
innervate bristles and campaniform sensilla in insects and is thought to activate
transducer complexes (39, 40). Althoughelegandacks hairs and bristles, neu-
rons that innervate sensilla arrayed around the worm’s mouth res@mdsephila
bristle mechanosensory neurons in their ultrastructure. The position of these neu-
rons suggests that they, too, may be activated by compression perpendicular to
the long axis of the sensory cilia. By contrast, sound stretches and compresses
Drosophilasound receptors (scolopidia) parallel to the long axis of the cilium.
Genetic analysis suggests that bristles and scolopidia rely on many of the same
proteins for their function (41), however, despite differences in the mode of me-
chanical coupling (Table 2).

Touch and force sensation have been studied in several metazoans, including
invertebrates such as crayfish, crickets, flies, and spiders, and vertebrates such as
frogs, mice, and humans. Differences in the modes of mechanical coupling com-
plicate efforts to compare the sensitivities of mechanosensory cells. For example,
responses of crayfish stretch receptors are frequently measured as a percentage of
resting length (e.g., Reference 47), whereas responses of insect bristle receptors
are measured as a function of deflection (e.g., Reference 48). Measuring responses
as a function of applied force makes it possible to compare sensitivities. In general,
mechanosensory cells can sense forces over a range of approximately two orders of
magnitude. Absolute sensitivity, however, varies widely (Table 2). Differences in
absolute sensitivity may reflect differences in mechanical coupling, the sensitivity
of the sensory mechanotransduction complex, or both factors.
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TABLE 2 Sensitivities of selected touch- and force-sensitive neurons

Sense organ Species and/or common name yHmN)  Reference
Slit sense organ Cupiennius salefwandering spider) 0.026 (42)
Cercal thread hairs Acheta domesticéhouse cricket) 0.18 (39)
Nematocyte Stauridiosarsia productghydra) 0.0002 (43)
Stretch receptor ~ Procambarus allen{crayfish) 0.21 (44)
Muscle spindle Frog 5.28 Q)
Glabrous skin Human 0.54-7.5 (45)
Glabrous skin Mouse 2.8-13.0 (46)

CELLS THAT SENSE FORCE IN C. ELEGANS

On the Natural Environment of C. elegans

Wild C. elegandive in soil and eat bacteria. They crawl on the damp surfaces of
soil particles, held in place by surface tension produced by thin water films. While
navigating this environmen€. elegansexperiences external forces produced by
surface tension, by colliding with adjacent soil particles and other animals, as well
as internal forces generated by its own movement. Movement is accompanied by
waves of alternating dorsal and ventral muscle contractions (49). Such movements
could activate neuronal and muscle stretch receptors, providing ongoing feedback
for movement control. In the laboratofy, eleganseave visible, sinusoidal tracks

as they crawl through a bacterial lawn on the surface of an agar plate. Differences
in internal force sensing produced by mutations have been inferred by analyzing
tracks (7). External force sensing is studied by observing how animals respond to
touch along the body wall (gentle and harsh touch) and at the tip of head (nose
touch) and to substrate acceleration (tap). The responses are simple: Adult animals
withdraw from touches and reverse direction in response to tap (50). Gentle touch
also modifies egg laying (51), pharyngeal pumping (52), and resets the defecation
cycle (53).

Figure 2 shows neurons identified as mechanosensory by anatomical crite-
ria (49). In adult hermaphrodites, 22 cells have ciliated sensory endings, 18 of
which are associated with sensory organs or sensilla arrayed around the buc-
cal opening (49, 54,55). Adult males have 48 additional ciliated sensory neu-
rons that innervate the male tail, hook, post-cloacal sensilla, and spicules (56),
male-specific structures essential for efficient mating. Males have an additional
set of fourfold symmetric cephalic sensilla whose ciliated endings are exposed
to the external environment (55). Upon contact with hermphrodites, males search
for the vulva, insert their spicules, and transfer sperm. Male mating behavior
requires the male-specific sensilla (57), most of which are believed to be mechano-
sensory. Male sensory neurons exposed to the external environment could be poly-
modal, recognizing both physical contact and a chemical signal.
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C. elegansand insect cuticular sensilla share a common anatomical plan
(Figure 2D); they are composed of one or more ciliated sensory dendrites, a socket
cell that joins the sensillum to the hypodermis, and a glial-like sheath cell (54, 55).
Some sensory neurons are encapsulated by the cuticle, whereas others are contained
within a channel open to the external environment. The amphids are the largest
sensilla; each amphid contains 12 sensory neurons, 4 of which are encapsulated,
and 8 of which are exposed to the outside. The 6 non-ciliated mechanosensory cells
extend long, microtubule-filled neurites in close apposition to the animal’s hypo-
dermis and cuticle. These cells are called touch cells because they are needed for the
response to gentle touch along the body wall (52) and are among the best-studied
neurons in theC. eleganservous system.

Touch Cells

Touch cell neurites are filled with atypical, large-diameter microtubules arrayed
such thattheir distal ends are in close apposition to the cellmembrane (Figijre 2

The junction between these microtubules and the cell membrane was proposed to
be the site of a sensory mechanotransduction complex (58, 59). Laser ablation by
Chalfie et al. (52) revealed that one pair of touch cells (PLML and PLMR) is
responsible for touch sensation along the posterior half of the animal, whereas a
second pair (ALML and ALMR) mediates touch sensation along the anterior half
of the animal together with a third, unpaired cell (AVM). A sixth, unpaired cell
(PVM) has the same ultrastructural features as the other touch cells, but killing
PVM produces no detectable defect in touch sensation (52, 60, 61). When all 6
cells are killed by a laser or by a toxic gene product, animals fail to respond to
gentle touch, but retain the ability to respond to strong stimuli (52, 62). Intact,
wild-type animals can reliably detect 16N touches, whereas animals lacking
touch cells because of toxic mutations in timec-4gene respond to forces in
excess 0of>100 uN (I. Chin, M.B. Goodman & M. Chalfie, unpublished data).
Such large forces are probably detected by the PVD cells, because killing these
cells in animals that lack touch cell function eliminates harsh touch sensitivity
(62). PVD cells are bipolar neurons with long, undifferentiated neurites that run
along the lateral body wall. Like the 6 touch cells, PVD expresses the MEC-3
LIM homodomain protein (62). Loss ahec-3function eliminates sensitivity

to forces up to 200N (I. Chin, M.B. Goodman & M. Chalfie, unpublished
data).

ASH and Others

Three classes of ciliated sensory neurons mediate sensitivity to nose touch: ASH,
FLP, and OLQ (70). ASH, FLP, and OLQ innervate distinct sensilla at the tip of
the nose (Figured. The ciliated endings of ASHL/R are in the left and right
amphid sensilla, where they are exposed to the external environment through a
channel in the amphid sheath cell (49). The ASH cells are considered polymodal
sensory neurons because they are needed for the sensation of nose touch (63),



Annu. Rev. Physiol. 2003.65:429-452. Downloaded from arjournals.annualreviews.org
by CALIFORNIA INSTITUTE OF TECHNOLOGY on 09/08/05. For persona use only.

TRANSDUCING TOUCH INC. ELEGANS 435

high osmolarity (64), and noxious chemicals (65). All three types of stimuli evoke
qualitatively similar behaviors: Upon encountering a noxious stimulus, animals
halt forward movement, back up, and then turn away. ASH also contributes to
avoidance of acid pH (66) and toxic concentrations of'Cthd Cd* (67). In this

way, ASH resembles vertebrate sensory neurons that sense noxious force, heat,
and chemicals in the skin. Like ASH, the FLP cells are bilaterally symmetric, with
sensory endings in the left and right labial sensilla (49). The OLQ cells, by contrast,
are fourfold symmetric, with sensory endings in a set of sensilla distributed around
the mouth (left, dorsal, right, and ventral) (49). Unlike ASH, neither FLP nor OLQ
has sensory endings exposed to the external environment.

CEP, ADE, and PDE

C. eleganshermaphrodites slow their forward motion upon entering a lawn of
bacteria. This basal slowing response requires dopamine and eight putative mecha-
nosensory neurons: the four CEPs, the two ADEs, and the two PDEs (68). Con-
sistent with a role for dopamine in the basal-slowing response, these eight cells
are the only dopaminergic neurons in hermaphrodites (69). The CEP, ADE, and
PDE neurons have ciliated sensory endings embedded in different regions of the
cuticle. The four CEP neurons have sensory endings in the outer labial sensilla,
distributed in a fourfold symmetric pattern around the buccal opening (Figire 2
whereas ADE and PDE have sensory endings embedded along lateral midlines
located anteriorly and posteriorly, respectively. Sawin et al. (68) proposed that
CEP, ADE, and PDE mediate basal slowing by sensing the mechanical effects of
crawling through bacteria. The evidence in support of this idea is twofold. First,
the slowing response evoked by bacteria is mimicked by sterile Sephadex G-200
beads, which are unlikely to present a chemical stimulus and are too large to in-
gest (50-10@«m). Second, Sephadex-mediated slowing also requires CEP, ADE,
and PDE. In addition, animals with unilateral ablations exhibit the basal-slowing
response only when crawling on the intact, unoperated side.

Other Cells

The IL1 cells are a set of six bipolar neurons that have sensory endings in the
inner labial sensilla and also form neuromuscular junctions. Like ventral cord
motor neurons, the six IL1 cells are interconnected by gap junctions (49). To-
gether with OLQ and the RMD motor neurons, the IL1 cells regulate the rate
of spontaneous foraging (70). The IL1 and OLQ neurons have also been sug-
gested to mediate responses to touch along the dorsal and ventral surface of the
nose.

Male-Specific Sensilla

Approximately half of the male-specific neurons (46 of 87) are ciliated sensory neu-
rons that innervate the male tail, hook, post-cloacal sensilla, and spicules (56, 71).
Thirty-six neurons innervate nine pairs of sensory rays (2 neurons/ray) in the male
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tail. All these neurons have ciliated endings contained within channels, except
for the neurons (which are encapsulated) that innervate ray 6 (56). Rays 1, 5,
and 7 open to the animal’s dorsal side and are necessary for males to recognize
contact with hermaphrodites along this surface (57). Rays 2, 4, and 8 open ven-
trally and appear to act in concert with sensory neurons that innervate the hook,
post-cloacal sensilla, and spicules to recognize hermaphrodite contact along the
ventral surface (57). Two sensory neurons, HOA and HOB, innervate the hook and
contribute to vulva location (57). Four neurons, SPDL/R and SPVL/R, innervate
the spicule (56) and contribute to spicule insertion and sperm release (64). These
sensory neurons are believed to detect the mechanical effects of hermaphrodite
contact, vulva location, and spicule insertion.

Stretch Receptors

Several types oF. elegansnotor neurons extend long, undifferentiated processes
that run parallel to the animal’s body axis. These regions may function as uncon-
ventional stretch receptors (L. Byerly & R.L. Russell, cited in Reference 49). If
true, then some€. eleganseurons could serve as both sensory neurons and motor
neurons. In the case of the ventral cord motor neurons (VA, DA, VB, and DB),
such stretch receptive regions could encode local body curvature and translate this
signal directly into localized changes in motor activity. Such signals could also
contribute to the generation and maintenance of propagating waves of body flex-
ion by spreading to adjacent body regions through the gap junctions that connect
motor neurons within each class (49). Two additional classes of motor neurons,
SMB and SMD, send processes posteriorly along sub-lateral nerve cords, where
they are ideally situated to monitor bend in the anterior body (49). In males, the
spicule motor neuron (SPC) may also provide proprioceptive information (56).
Thus there are seven classes of motor neurons that could sense stretch during
locomotion.

SENSORY MECHANOTRANSDUCTION
BY ASC COMPLEXES

Reconstituting a Transduction Complex
from C. elegans Touch Cells

Genetic screens for touch-insensiteelegangdentified 12neqfor mechanosen-

sory abnormal) genes needed for the function but not the development of the touch
cells (72,73). Nearly all these genes have been cloned and characterized. These
genes encode proteins needed to form the specialized cytoskeleton and extracellu-
lar matrix of touch cells, two DEG/ENaC channel proteins, and two cytoplasmic
regulators (Figure &. All of the cloned genes are expressed in the touch cells
except formec-5 which is expressed by epidermal cells that envelope touch cell
neurites (74). A loss-of-function mutation in a singfeecgene is sufficient to
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eliminate touch sensitivity, indicating that these genes function non-redundantly
and suggesting that all 12 proteins are needed for touch cell function. Gene in-
teraction studies carried out by Chalfie and colleagues (6, 75) were critical in for-
mulating the first molecular model of a metazoan sensory mechanotransduction
complex.

Efforts to reconstitute this complex in heterologous cells are underway. Thus
far, these studies show that the ASC proteins, MEC-4 and MEC-10, are suffi-
cient to form a heteromeric, amiloride-sensitive™dannel (76). The accessory
proteins, MEC-2 and MEC-6, increase current amplitude without affecting the
steady-state surface expression of either MEC-4 or MEC-10 (76, 77). Consistent
with gene interactions in vivo and functional interactions in heterologous cells, all
four proteins appear to bind one another (76, 77).

Other ASC Complexes

Similar complexes may exist . elegansnotor neurons (7) and body wall muscle

(8, 78), which are known to express homologs of some, but not all, of the genes
needed for touch cell function (Figurd,8). Multidendritic or type Il sensory
neurons inDrosophilainnervate the larval cuticle and express two ASC genes,
rpk (Ripped Pockégtand ppk (Pickpockel, proposed to encode transducer chan-
nels (79). At present, there is no direct evidence that these neurons sense touch
in Drosophilaor thatrpk andppk are needed for touch sensation. Nonetheless,
responses to force have been recorded from equivalent neurglasidiucaarvae

(80), supporting the idea that type Il sensory neurons in insects employ a sim-
ilar touch-transducing complex as the one proposedzoelegangouch cells.

ASC complexes might also mediate sensory mechanotransduction proprioceptive
neurons of the tropical wandering spid@ufpiennius sal@j because transduction
currents in these neurons are'Nselective and blocked by amiloride (81).

AMILORIDE-SENSITIVE CHANNELS

ASC proteins assemble as homomultimers or heteromultimers to form non-voltage-
gated, Nd channels blocked by the diuretic, amiloride. They share a common
topology consisting of two transmembrane domains separated by a long extra-
cellular domain that contains at least two cysteine-rich domains (Figur€.4);
elegansASC proteins also contain a third, non-conserved cysteine-rich domain.
Structure-function studies of vertebrate ENaCs have identified conserved residues
near the second transmembrane domain important for gating, ion selectivity, and
amiloride blockade (82). These residues are mutated in several alleles of ASC-
encoding genes i@. elegangdomain 4, Figure 4), indicating that they are critical

for ASC function inC. elegansas well as for channel biophysics and pharma-
cology in heterologous cells. Dominant allelesrméc-4and deg-1that cause

cell degeneration encode substitutions of a conserved alanine (indicated in
red); this phenotype led to the hypothesis that the presence of bulky
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side chains produces hyperactive channels (5, 18). Consistent with this idea, in-
troducing bulky moieties at homologous positions in ENaC subunits was found
to increase open probabilityPf) (83). A conserved domain in the intracellular
NH, terminus of ASC proteins is also critical for function (domain 1, Figure
4). A loss-of-function mutation in the homologous region of the huggiNaC

gene is associated with the salt-losing syndrome, PHAL (84); mutant ENaC chan-
nels exhibit a reduceB, when expressed iKenopusoocytes (85), implicating

this domain in some aspect of channel gating. Recently, it was shown that over-
expressing the Niterminus of MEC-4 disrupts touch-sensitivity in wild-type
animals and reduces cell death in animals expressing MEC-4(A713V). Both ef-
fects were eliminated by introducing theec-4u25) T91l andmec-4u339 S92F
substitutions into the NHterminal fragment, suggesting that these residues may
be involved in protein-protein interactions (86). Although the first transmembrane
domain is poorly conserved among ASC proteins, there is a highly conserved re-
gion nearby (domain 2, Figure 4). Gain-of-function mutationsime-105alter

a proline residue in this domain (8) and result in hypercontracted animals (87).
Expression of mutant UNC-105 channelsi@nopuoocytes showed that thumc-
105(n490 P134S substitution alters channel gating (78). At present, there are no
otherC. elegangmutant alleles that encode amino acid changes in this domain
or any evidence indicating that this domain contributes to gating in vertebrate
ASCs.

The subgroup o€. elegansASC proteins that includes MEC-4 and MEC-10
(Figure 5) contains an extracellular regulatory domain or ERD (domain 3,
Figure 4). A role for this domain in channel gating was proposed on the basis
of thedeg-Ju506 A393T mutation, which causes cellular degeneration but only
when homozygous. Introduction of the equivalent mutation mtx-4or dele-
tion of nine residues in this domain produced a similar degeneration phenotype
(88), supporting the inference that this domain negatively regulates the channel.
Garcia-Aioveros et al. (88) proposed that this domain could be sensitive to me-
chanical manipulation and provide the molecular substrate for the mechanosen-
sory function of MEC-4 and MEC-10. Interestingly, the ERD is restricted to
a subgroup of seve@. elgansASC proteins: MEC-4, MEC-10, UNC-8, DEG-1,

Figure 3 ASC channel complexesa) Touch cell complex, adapted from Gu et al.
(75). In this model, thecmcontains MEC-5, MEC-9, and possibly MEC-1; the sensory
mechanotransduction channel is formed by MEC-4, MEC-10, and possibly MEC-6;
MEC-2 enhances channel activity and links the channel to specialized microtubules
containing MEC?/8-tubulin and MEC-12¢-tubulin. (o) Motor neuron stretch receptor
complex. ecm components are not known; channel hypothesized to be formed by
UNC-8, DEL-1, and MEC-6; linked to the cytoskeleton by UNC-d).Nluscle stretch
receptor complex. ecm contains LET-2/collagen channel formed by UNC-105; linkers
and cytoskeletal components have not been identified.
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DEL-1, UNC-105, and ZK770.1. It is absent from the vertebrate ASC proteins,
ASIC2 and ASIC3, proposed to contribute to touch sensation in mice (9, 10).
From this analysis, it is tempting to speculate tt#gtthe ERD could represent a
nematode-specific specialization for mechanical sensitivity andij&t glegans

ASC proteins that form sensory mechanotransduction channels are restricted to this
subgroup.

To learn more about conservation of ASC proteins across species, we searched
proteins predicted from the sequences of two invertebrate gendnedegans
andDrosophilg and three vertebrate genomes (human, mouse, and the Japanese
pufferfish, Fugu rubripe$. No genes predicted to encode ASC proteins were
found in the Arabdopsis thalianagenome, indicating that ASCs may be ab-
sent from plants. We found 28 and 25 predictest genes in the genomes of
C. elegansandDrosophilg respectively. Fewer genes were found in the vertebrate
genomes: 9 in humans, 8 in mouse, and Fugu Including three FMRF-gated
ASCs identified in mollusksHelix aspersaHelisoma trivolvis and Lymnaea
stagnalig, the ASCs we analyzed fell into six subfamilies (see supplemental
material: follow the Supplemental Material link on the Annual Reviews home-
page at http://annualreviews.org/); three appeared to be nematode-specific (ASC2,
ASC4, and ASC6), one was represented in nematodes, mammals, and fish (ASC3),
one in insects, nematodes, and fish (ASC5), and one in mammals and mollusks
(ASC1). Thus ASC proteins are highly divergent among species. Despite this,
many residues important for ion channel function are conserved across species
(see above).

Approximately two thirds of the 28 predict€l elegans asgenes are found on
either the first chromosome (8 genes) or the X chromosome (9 genesjclyienes
were detected on the third chromosome. We found two clusters of predisted
genes; one located on chromosome | (C24G7.1, C24G7.2, and C24G7.4, map posi-
tion = I:—1.63) and one on chromosome V (Y69H2.13, Y69H2.2, Y69H2.11, map
position = V:19.8). Both clusters encode related ASC proteins; the C24G7 pro-
teins are 22.8% identical, whereas the Y69H2 proteins are 28.4% identical. These

Figure 5 C. elegansASC proteins. ASCs denoted by classical locus names (three-
letter plus number abbreviations) or by molecular sequence names (cosmid name).
Proteins predicted to be encoded by tBe elegansgenome were obtained from
“wormpep81” (104) and scanned for ASC motifs using hidden Markov model (HMM)
searches (HMMER 2.2 g) (105) or position-specific iterated BLAST searches (psi-
BLAST) (106). Global HMMs for ASC families were obtained from PFAM 7.3
(ASC.hmm) (107). psi-BLAST for ASC proteins used residues 444-740 of MEC-

4 as a query sequence. Dendrograms generated by ClustalW 1.82 (108) using full
protein sequences, 10,000 bootstraps, and distance correction. Genomic locations and
cellular expression patterns extracted from WormBase (WS81) (104); data in italics
derived from DNA microarray data (89).
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clusters could represent gene duplication events. Twehadegans asgenes are
either known to be expressed in heurome¢-4 mec-10 deg-1 unc-8 del-1) or
clustered with neuronal genes in analyses of DNA microarray experiments (89),
consistent with possible roles for ASC proteins in sensory mechanotransduction
and other aspects of neuron function.

Loss-of-function mutations in the #scgenes defined by behavioral genetics
produce either subtle defects or no detectable phenotype (Figure 5). The absence of
a detectable mutant phenotype could indicate that ssogenes function redun-
dantly, perhaps by forming heteromeric channels with other ASC proteins. Theo-
retically, the 28 putative ASC proteins could form 406 distinction channélsét
egang28 homomeric channels and 378 heteromeric channels formed by two ASC
proteins). The actual number of ASC channels formed in vivois likely to be smaller,
however, owing to distinct expression patterns for each gene and the capacity
of some, but not all, ASC proteins to form homomeric channels. For example,
MEC-4 and MEC-10 are co-expressed in all six touch cells and form heteromeric
channels inXenopusoocytes. In oocytes, MEC-4, but not MEC-10, can form
homomeric channels (76). However, homomeric MEC-4 channels are unlikely
to exist in vivo because every cell that expresses MEC-4 also expresses MEC-
10. MEC-10, by contrast, is expressed in four additional cells (the FLPs and
PVDs) and is likely to associate with one or more additional ASC proteins in these
cells.

SENSORY MECHANOTRANSDUCTION
BY TRP CHANNELS

A TRP Channel (NOMPC) in Drosophila Bristles

Screens foDrosophilalarvae with defects in mechanosensation and uncoordi-
nated adults identified several genes that can mutate to produce defects in electri-
cal responses of bristles (90) and in responses to sound (41). Defects in courtship
behaviors (which rely on the flies’ ability to hear) were also observed. One of
these genesnompC encodes a TRP channel protein. iompCmutant flies,
bristle displacement evoked mechanosensory currents that were-eithés of

their wild-type amplitude or adapteefivefold faster than wild-type currents (13).

This study provides the most direct evidence that a TRP channel functions as a
sensory mechanotransduction channel. Thelegansortholog of NOMPC, en-
coded by Y71A12B.4 (41% identical), is expressed in CEP and ADE, which are
ciliated mechanosensory neurons needed for the basal slowing response to food
and to Sephadex beads (68). The intracellular, Xétminals of NOMPC and
Y71A12B.4 contain 29 ankyrin (ANK) repeats, 33-residue motifs that mediate
protein-protein interactions (91). At present, it is not known if either NOMPC or
its C. elegansrtholog form ion channels, if these channels are gated by force,
or if the channels are localized to ciliated endings, as expected for a transducer
channel.
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A Polymodal C. elegans TRP

Wild-typeosm-9andocr-2are required for all of the sensory functions of the poly-
modal ASH neurons and the odor-sensing AWA neurons (12,92). Both OSM-9
and OCR-2 co-localize to ciliated endings in ASH and AWA, where they are likely
to assemble into a single transduction channel (92). How could a single channel
contribute to both chemotransduction and mechanotransduction? A speculative
hypothesis is that the putative OSM-9/0CR-2 channel is activated indirectly by
tightly coupled receptors in ASH and AWA. To ensure rapid activation, the channel
could associate with this hypothetical receptor in a sensory transduction complex,
as proposed for phototransductioninosophila(93). Alternatively, the channel
could be gated both by chemical ligands and mechanical force. In any case, be-
havioral analyses afsm-9andocr-2 mutant animals support the idea that a single
TRP channel can subserve multiple sensory functions.

A Sexy TRP

TRP proteins also appear to be critical for normal mating behavidts @legans
males. This complex behavior relies on the function of male-specific sensory neu-
rons that express the TRP proteins, LOV-1 and PKD-2 (94, 95). Mutatidog-ih

pkd-2 or both genes produced equally severe phenotypes, supporting the idea that
LOV-1 and PKD-2 act together. In addition, both proteins were co-expressed in
the same sensory neurons and concentrated in ciliated endings, where they could
assemble into a single sensory receptor channel.

TRP ION CHANNELS

TRP ion channel proteins share a common predicted topology composed of an
intracellular NH-termimal domain that can include one or more ANK repeats,
six transmembrane domains, and a poorly conserved, intracelluld-@@minal
domain (25, 26, 28). ANK repeats appear to be important for function in vivo be-
causeosm-g§n1516 andosm-gn2743 affect a glycine residue conserved in the
ankyrin repeats of alC. eleganS'RPV proteins (12). Like the ASC proteins, TRP
proteins appear to be absent from plants; none were found in searchesfof the
thaliana genome. By contrast with ASC proteins, all six subfamilies are repre-
sented by predicted protein sequence€ irelegansDrosophila Fugu rubripes
and humans (Table 3). At least one mutation i€.aelegansTRP gene ¢up-5
can be functionally complemented by a transgene expressing its human ortholog,
MCOLNZ1 (96). This suggests that the six TRP subfamilies were present and had
already developed specific functions, in an ancestor common to both vertebrates
and invertebrates (97). In addition to these conserved families, one subfamily was
detected only in nematodes (Table 3). This last subfamily of channel proteins are
good candidates for mediating nematode-specific biological functions.

Searches of th€. elegangienome sequence reveal 24 genes predicted to encode
TRP ion channel proteins (Figure 6). Nearly half of these genes are found on
chromosome IV (10 of 23). TRP-encoding genes do not appear in clusters; even the
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TABLE 3 TRP channels €. elegansDrosophila Fugu rubripes and
Homo sapiens

Caenorhabditis  Drosophila Fugu Homo
Subfamily elegans melanogaster rubripes sapiens
TRPC 3 3 8 6
TRPV 5 2 4 6
TRPM 4 1 15 9
TRPN 3 5 1 1
TRPP 2 3 5 5
TRPML 1 1 5 2
C. elegansspecific 6 — — —
Total 24 15 38 29

closely related TRPV genesgm-9 ocr-1, ocr-2, ocr-3andocr-4) are distributed
throughout the genome. All of the TRPV genes are expressed in sensory neurons
except for OCR-3 (12,92). As noted above, OSM-9 and OCR-2 are proposed
to form a sensory transduction channel in AWA and ASH. Similarly, the TRPP
genesjov-1andpkd-2 are co-expressed in male-specific sensilla, organs needed
for normal mating behavior (94, 95), and could form a sensory transduction channel
in male-specific sensory neurons. Not all TRP proteins are expressed in neurons.
For example, the TRPML geneyp-5 is expressed in coelomocytes and appears to
be needed for normal endocytosis and lysosomal function (96g68)2encodes
a TRPM protein needed for normal gonad development (99). In addition, two TRP
proteins may be expressed in sperm (KO1A11.4, C05C12.3), since these genes
cluster with sperm-specific mMRNAs in DNA microarray experiments (89). Thus
TRP ion channels are likely to subserve diverse cellular functio@s glegans

Almost nothing is known about currents carried ®yelegansTRP channels.
Thus fartrp-dependent ionic currents have not been studied using either in vivo or
in vitro electrical recordings. Nor has ion channel activity been observed f&€ any
elegansTRP channels in heterologous cells. Recent efforts to express OSM-9 and
OCR-2 inXenopu®ocytes and HEK-293 cells have not been successful (92). Ge-
netic experiments show that channels formed by these TRPV proteins must differ
from those formed by mammalian TRPV1, since expressing mammalian TRPV1
in ASH failed to restore osmotic sensitivity tem-9andocr-2 mutants. TRPV1
was functionalirC. elegang:ieurons, however, because this maneuver transformed
wild-type, capsaicin-insensitive animals into animals that avoided capsaicin (92).

SUMMARY AND FUTURE DIRECTIONS

The putative sensory mechanotransduction channels described here would
have been extremely difficult to identify by methods other than classical genetics.
Our understanding of how they work and the extent to which mechanisms of
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mechanotransduction are shared among diverse mechanosensory neurons and con-
served across species is only beginning. Even in a comparatively simple animal
such a<C. elegansmechanosensory neurons differ in their behavioral functions,
morphologies, and ultrastructure. There are several lines of work that should ex-
pand our understanding, afd eleganss ideally suited for this task.

Many potential, but uncharacterized, sensory transduction channels are en-
coded by theC. elegangienome; one example, Y71A12B.4, is a strong candidate
for being a mechanoreceptor but has so far been missed by classical genetics. Sys-
tematic determination of channel expression patterns by GFP transgenes, followed
by site-selected deletion mutagenesis, should help to make behavioral functions
clear. However, behavioral analysis alone cannot determine if a given channel acts
as a sensory transducer or if the channel provides an essential function for cellular
signaling following transduction. This important question could be resolved us-
ing in vivo electrical (100) or optical (101) recordings from identifédelegans
neurons. At present, such evidence is lacking even for the well-characterized ASC
complex ofC. elegangouch cells.

In vertebrate hair cells, transduction occurs extraordinarly rapidly0Q ws)
and is hypothesized to involve direct gating of the transducer channel by force
(38,102). Itis important to remember, however, that direct mechanical gating may
not be universal and that some transducer channels could be activated indirectly. In
either case, the molecular substrates of mechanical gating are unknown. Missense
mutations isolated in genetic screens could prove instructive in this regard, espe-
cially considering that these alterations in amino acid sequence are guaranteed to
produce defectsin some aspect of synthesis, trafficking, or function. Single-channel
studies of these mutants hold the promise of discovering molecular determinants
of gating and permeation.

Dissection of the sensory mechanotransduction channel is itself only a starting
point. As discussed above, mechanoreceptor proteins in metazoa are unlikely to
have the simplicity of proteins such &s coli MscL. They are instead likely to
work as part of intricate protein machines, anchored on both sides of the membrane
to structural elements of the cytoskeleton and extracellular matrix. Strong bases
for identifying such machines i@. elegandouch cells are the extensive genetic
analyses and transcriptional profiling of these cells (72,103). Recent studies in
heterologous cells have demonstrated both functional and physical interactions
between MEC-4, MEC-10, MEC-2, and MEC-6 (76, 77). Comparable knowledge
of the potential components of sensory transduction complexes is currently lacking
for other mechanosensory neuron€irelegansEfforts to uncover these compo-
nents using classical genetics have been disappointing thus far. As a result, it may
be necessary use alternative approaches such as the determination of mechanosen-
sory neuron-specific gene expression (103). Understanding of the molecular events
that give rise to the sensation of touch is poised to expand in the near future, par-
ticularly through the parallel approaches of in vivo physiology and heterologous
reconstitution studies that rely on genetic data, which have successfully identified
proteins and functional domains critical for mechanosensation.
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Figure 2 Mechanosensory cells @f. elegans(a) Anterior sensilla diagrammed in a
cross section near the anterior tip@felegangleft) and positions of mechanosensory
neurons that innervate the sensiliglt). (b) Sensory endings embedded in the cuticle
(lefty and open to the outsideght). (c) Touch cells. Diagram, adapted from (59), shows
the left side of an adult animald) Cross section of a touch neurite. (Adapted from
http://www.wormatlas.org.)g) Sensory rays in the male tale, lateral vief)) Male-
specific sensilla, ventral surface of the male tail. Abbreviations: cu, cuticle; So, socket
cell; Sh, sheath cell; hyp, hypodermis; ecm, extracellular matrix; mt, 15-protofilament
microtubules; as, amphid sensillum; ils, inner labial sensillum; cs, cephalic sensillum;
ols, outer labial sensillum.
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Figure 4 Clusters of point mutations in ASCs. Cysteine-rich and transmembrane
domains shown in yellow and red, respectively. Extracellular regulatory domain (blue)
is found in 7 ASC proteins (MEC-4, MEC-10, DEG-1, DEL-1, UNC-8, UNC-105,
and ZK770.1). Residues conserved in vertebrate ASCs highlighted in yelld, in
elegansASCs highlighted in blue. Residues implicated in gating and degeneration
(X), amiloride binding (*), and selectivity (bracket). Missense mutations reproduced
from (86) for MEC-4, (6) for MEC-10, (78) for DEG-1, (7) for UNC-8, and (8) for
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