60 research outputs found

    Charge Asymmetric Cosmic Ray Signals From Dark Matter Decay

    Full text link
    The PAMELA and Fermi measurements of the cosmic-ray electron and positron spectra have generated much interest over the past two years, because they are consistent with a significant component of the electron and positron fluxes between 20 GeV and 1 TeV being produced through dark matter annihilation or decay. However, since the measurements are also consistent with astrophysical interpretations, the message is unclear. In this paper, we point out that dark matter can have a more distinct signal in cosmic rays, that of a charge asymmetry. Such charge asymmetry can result if the dark matter's abundance is due to a relic asymmetry, allowing its decay to generate an asymmetry in positrons and electrons. This is analogous to the baryon asymmetry, where decaying neutrons produce electrons and not positrons. We explore benchmark scenarios where the dark matter decays into a leptophilic charged Higgs boson or electroweak gauge bosons. These models have observable signals in gamma rays and neutrinos, which can be tested by Fermi and IceCube. The most powerful test will be at AMS-02, given its ability to distinguish electron and positron charge above 100 GeV. Specifically, an asymmetry favoring positrons typically predicts a larger positron ratio and a harder (softer) high energy spectrum for positrons (electrons) than charge symmetric sources. We end with a brief discussion on how such scenarios differ from the leading astrophysical explanations.Comment: 8 pages, 11 figures, revtex; v2, additional references adde

    No Indications of Axion-Like Particles From Fermi

    Full text link
    As very high energy (~100 GeV) gamma rays travel over cosmological distances, their flux is attenuated through interactions with the extragalactic background light. Observations of distant gamma ray sources at energies between ~200 GeV and a few TeV by ground-based gamma ray telescopes such as HESS, however, suggest that the universe is more transparent to very high energy photons than had been anticipated. One possible explanation for this is the existence of axion-like-particles (ALPs) which gamma rays can efficiently oscillate into, enabling them to travel cosmological distances without attenuation. In this article, we use data from the Fermi Gamma Ray Space Telescope to calculate the spectra at 1-100 GeV of two gamma ray sources, 1ES1101-232 at redshift z=0.186 and H2356-309 at z=0.165, and use this in conjunction with the measurements of ground-based telescopes to test the ALP hypothesis. We find that the observations can be well-fit by an intrinsic power-law source spectrum with indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that no ALPs or other exotic physics is necessary to explain the observed degree of attenuation.Comment: 7 pages, 4 figures. v3: Matches published version, the analysis of H2356-309 is revised, no change in conclusion

    Consistent Scenarios for Cosmic-Ray Excesses from Sommerfeld-Enhanced Dark Matter Annihilation

    Full text link
    Anomalies in direct and indirect detection have motivated models of dark matter consisting of a multiplet of nearly-degenerate states, coupled by a new GeV-scale interaction. We perform a careful analysis of the thermal freezeout of dark matter annihilation in such a scenario. We compute the range of "boost factors" arising from Sommerfeld enhancement in the local halo for models which produce the correct relic density, and show the effect of including constraints on the saturated enhancement from the cosmic microwave background (CMB). We find that boost factors from Sommerfeld enhancement of up to ~800 are possible in the local halo. When the CMB bounds on the saturated enhancement are applied, the maximal boost factor is reduced to ~400 for 1-2 TeV dark matter and sub-GeV force carriers, but remains large enough to explain the observed Fermi and PAMELA electronic signals. We describe regions in the DM mass-boost factor plane where the cosmic ray data is well fit for a range of final states, and show that Sommerfeld enhancement alone is enough to provide the large annihilation cross sections required to fit the data, although for light mediator masses (less than ~200 MeV) there is tension with the CMB constraints in the absence of astrophysical boost factors from substructure. Additionally, we consider the circumstances under which WIMPonium formation is relevant and find for heavy WIMPs (greater than ~2 TeV) and soft-spectrum annihilation channels it can be an important consideration; we find regions with dark matter mass greater than 2.8 TeV that are consistent with the CMB bounds and have ~600-700 present-day boost factors.Comment: Related web application at http://astrometry.fas.harvard.edu/mvogelsb/sommerfeld . v2: added brief clarification regarding propagation parameters, plots now show effect of relaxing CMB bounds. 35 pages in JCAP format, 4 figures. Accepted for publication in JCA

    High Energy Positrons From Annihilating Dark Matter

    Full text link
    Recent preliminary results from the PAMELA experiment indicate the presence of an excess of cosmic ray positrons above 10 GeV. In this letter, we consider possibility that this signal is the result of dark matter annihilations taking place in the halo of the Milky Way. Rather than focusing on a specific particle physics model, we take a phenomenological approach and consider a variety of masses and two-body annihilation modes, including W+W-, ZZ, b bbar, tau+ tau-, mu+ mu-, and e+e. We also consider a range of diffusion parameters consistent with current cosmic ray data. We find that a significant upturn in the positron fraction above 10 GeV is compatible with a wide range of dark matter annihilation modes, although very large annihilation cross sections and/or boost factors arising from inhomogeneities in the local dark matter distribution are required to produce the observed intensity of the signal. We comment on constraints from gamma rays, synchrotron emission, and cosmic ray antiproton measurements.Comment: 4 pages, 1 figur

    The Case for a 700+ GeV WIMP: Cosmic Ray Spectra from PAMELA, Fermi and ATIC

    Full text link
    Multiple lines of evidence indicate an anomalous injection of high-energy e+- in the Galactic halo. The recent e+e^+ fraction spectrum from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) shows a sharp rise up to 100 GeV. The Fermi Gamma-ray Space Telescope has found a significant hardening of the e+e- cosmic ray spectrum above 100 GeV, with a break, confirmed by HESS at around 1 TeV. The Advanced Thin Ionization Calorimeter (ATIC) has also detected detected a similar excess, falling back to the expected spectrum at 1 TeV and above. Excess microwaves towards the galactic center in the WMAP data are consistent with hard synchrotron radiation from a population of 10-100 GeV e+- (the WMAP ``Haze''). We argue that dark matter annihilations can provide a consistent explanation of all of these data, focusing on dominantly leptonic modes, either directly or through a new light boson. Normalizing the signal to the highest energy evidence (Fermi and HESS), we find that similar cross sections provide good fits to PAMELA and the Haze, and that both the required cross section and annihilation modes are achievable in models with Sommerfeld-enhanced annihilation. These models naturally predict significant production of gamma rays in the galactic center via a variety of mechanisms. Most notably, there is a robust inverse-Compton scattered (ICS) gamma-ray signal arising from the energetic electrons and positrons, detectable at Fermi/GLAST energies, which should provide smoking gun evidence for this production.Comment: 28 pages; v2 plots corrected, references added; v3 included Fermi electron data at reviewer request, references adde

    Approaches used by parents to keep their children safe at home: a qualitative study to explore the perspectives of parents with children aged under five years

    Get PDF
    BACKGROUND: Childhood unintentional injury represents an important global health problem. Many unintentional injuries experienced by children aged under 5years occur within the home and are preventable. The aim of this study was to explore the approaches used by parents of children under five in order to help prevent unintentional injuries in the home and the factors which influence their use. Understanding how parents approach risk-management in the home has important implications for injury practitioners. METHODS: A multi-centre qualitative study using semi-structured interviews. A thematic approach was used to analyse the data. Sixty five parents of children aged under 5years, from four study areas were interviewed: Bristol, Newcastle, Norwich and Nottingham. RESULTS: Three main injury prevention strategies used by parents were: a) Environmental such as removal of hazards, and use of safety equipment; b) parental supervision; and c) teaching, for example, teaching children about safety and use of rules and routine. Strategies were often used in combination due to their individual limitations. Parental assessment of injury risk, use of strategy and perceived effectiveness were fluid processes dependent on a child's character, developmental age and the prior experiences of both parent and child. Some parents were more proactive in their approach to home safety while others only reacted if their child demonstrated an interest in a particular object or activity perceived as being an injury risk. CONCLUSION: Parents' injury prevention practices encompass a range of strategies that are fluid in line with the child's age and stage of development; however, parents report that they still find it challenging to decide which strategy to use and when

    Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope

    Get PDF
    We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10 degrees around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25 degrees and 10 degrees from the Galactic Center is well described by a the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25 degrees (~175 parsecs) of the Galactic Center, in contrast, departs from the expectations for by these processes. Instead, we find an additional component of gamma ray emission that is highly concentrated around the Galactic Center. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution (density proportional to r^{-gamma}, with gamma=1.18 to 1.33). The observed spectrum of this component, which peaks at energies between 1-4 GeV (in E^2 units), can be well fit by a 7-10 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of 4.6 x 10^-27 to 5.3 x 10^-26 cm^3/s, depending on how the dark matter distribution is normalized. We also discuss other sources for this emission, including the possibility that much of it originates from the Milky Way's supermassive black hole.Comment: 23 pages, 16 figure
    • …
    corecore