103 research outputs found

    New Caledonian crows rapidly solve a collaborative problem without cooperative cognition

    Get PDF
    There is growing comparative evidence that the cognitive bases of cooperation are not unique to humans. However, the selective pressures that lead to the evolution of these mechanisms remain unclear. Here we show that while tool-making New Caledonian crows can produce collaborative behavior, they do not understand the causality of cooperation nor show sensitivity to inequity. Instead, the collaborative behavior produced appears to have been underpinned by the transfer of prior experience. These results suggest that a number of possible selective pressures, including tool manufacture and mobbing behaviours, have not led to the evolution of cooperative cognition in this species. They show that causal cognition can evolve in a domain specific manner-understanding the properties and flexible uses of physical tools does not necessarily enable animals to grasp that a conspecific can be used as a social tool

    Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite tremendous progress in understanding the mechanisms of constitutive and alternative splicing, an important and widespread step along the gene expression pathway, our ability to deliberately regulate gene expression at this step remains rudimentary. The present study was performed to investigate whether a theophylline-dependent "splice switch" that sequesters the branchpoint sequence (BPS) within RNA-theophylline complex can regulate alternative splicing.</p> <p>Results</p> <p>We constructed a series of pre-mRNAs in which the BPS was inserted within theophylline aptamer. We show that theophylline-induced sequestering of BPS inhibits pre-mRNA splicing both in vitro and in vivo in a dose-dependent manner. Several lines of evidence suggest that theophylline-dependent inhibition of splicing is highly specific, and thermodynamic stability of RNA-theophylline complex as well as the location of BPS within this complex affects the efficiency of splicing inhibition. Finally, we have constructed an alternative splicing model pre-mRNA substrate in which theophylline caused exon skipping both in vitro and in vivo, suggesting that a small molecule-RNA interaction can modulate alternative splicing.</p> <p>Conclusion</p> <p>These findings provide the ability to control splicing pattern at will and should have important implications for basic, biotechnological, and biomedical research.</p

    Comparing the Performances of Apes (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus) and Human Children (Homo sapiens) in the Floating Peanut Task

    Get PDF
    Recently, Mendes et al. [1] described the use of a liquid tool (water) in captive orangutans. Here, we tested chimpanzees and gorillas for the first time with the same “floating peanut task.” None of the subjects solved the task. In order to better understand the cognitive demands of the task, we further tested other populations of chimpanzees and orangutans with the variation of the peanut initially floating or not. Twenty percent of the chimpanzees but none of the orangutans were successful. Additional controls revealed that successful subjects added water only if it was necessary to obtain the nut. Another experiment was conducted to investigate the reason for the differences in performance between the unsuccessful (Experiment 1) and the successful (Experiment 2) chimpanzee populations. We found suggestive evidence for the view that functional fixedness might have impaired the chimpanzees' strategies in the first experiment. Finally, we tested how human children of different age classes perform in an analogous experimental setting. Within the oldest group (8 years), 58 percent of the children solved the problem, whereas in the youngest group (4 years), only 8 percent were able to find the solution

    How Abnormal Is the Behaviour of Captive, Zoo-Living Chimpanzees?

    Get PDF
    Background. Many captive chimpanzees (Pan troglodytes) show a variety of serious behavioural abnormalities, some of which have been considered as possible signs of compromised mental health. The provision of environmental enrichments aimed at reducing the performance of abnormal behaviours is increasing the norm, with the housing of individuals in (semi-)natural social groups thought to be the most successful of these. Only a few quantitative studies of abnormal behaviour have been conducted, however, particularly for the captive population held in zoological collections. Consequently, a clear picture of the level of abnormal behaviour in zoo-living chimpanzees is lacking. Methods. We present preliminary findings from a detailed observational study of the behaviour of 40 socially-housed zoo-living chimpanzees from six collections in the United States of America and the United Kingdom. We determined the prevalence, diversity, frequency, and duration of abnormal behaviour from 1200 hours of continuous behavioural data collected by focal animal sampling. Results, conclusion, and significance. Our overall finding was that abnormal behaviour was present in all sampled individuals across six independent groups of zoo-living chimpanzees, despite the differences between these groups in size, composition, housing, etc. We found substantial variation between individuals in the frequency and duration of abnormal behaviour, but all individuals engaged in at least some abnormal behaviour and variation across individuals could not be explained by sex, age, rearing history or background (defined as prior housing conditions). Our data support a conclusion that, while most behaviour of zoo-living chimpanzees is ‘normal’ in that it is typical of their wild counterparts, abnormal behaviour is endemic in this population despite enrichment efforts. We suggest there is an urgent need to understand how the chimpanzee mind copes with captivity, an issue with both scientific and welfare implications

    Discovery of species-wide tool use in the Hawaiian crow

    Get PDF
    Funding from the Biotechnology and Biological Sciences Research Council, UK (BBSRC; grant BB/G023913/2 to C.R., and studentship to B.C.K.), the University of St Andrews (C.R.), JASSO (S.S.), and the Royal Society of London (M.B.M.). Funding for thecaptive ‘Alala propagation programme was provided by the U.S. Fish and Wildlife Service, Hawai‘i Division of Forestry and Wildlife, Moore Family Foundation, Marisla Foundation, several anonymous donors, and San Diego Zoo Global.Only a handful of bird species are known to use foraging tools in the wild1. Amongst them, the New Caledonian crow (Corvus moneduloides) stands out with its sophisticated tool-making skills2, 3. Despite considerable speculation, the evolutionary origins of this species’ remarkable tool behaviour remain largely unknown, not least because no naturally tool-using congeners have yet been identified that would enable informative comparisons4. Here we show that another tropical corvid, the ‘Alalā (C. hawaiiensis; Hawaiian crow), is a highly dexterous tool user. Although the ‘Alalā became extinct in the wild in the early 2000s, and currently survives only in captivity5, at least two lines of evidence suggest that tool use is part of the species’ natural behavioural repertoire: juveniles develop functional tool use without training, or social input from adults; and proficient tool use is a species-wide capacity. ‘Alalā and New Caledonian crows evolved in similar environments on remote tropical islands, yet are only distantly related6, suggesting that their technical abilities arose convergently. This supports the idea that avian foraging tool use is facilitated by ecological conditions typical of islands, such as reduced competition for embedded prey and low predation risk4, 7. Our discovery creates exciting opportunities for comparative research on multiple tool-using and non-tool-using corvid species. Such work will in turn pave the way for replicated cross-taxonomic comparisons with the primate lineage, enabling valuable insights into the evolutionary origins of tool-using behaviour.PostprintPeer reviewe

    The Advantage of Standing Up to Fight and the Evolution of Habitual Bipedalism in Hominins

    Get PDF
    BACKGROUND: Many quadrupedal species stand bipedally on their hindlimbs to fight. This posture may provide a performance advantage by allowing the forelimbs to strike an opponent with the range of motion that is intrinsic to high-speed running, jumping, rapid braking and turning; the range of motion over which peak force and power can be produced. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that bipedal (i.e., orthograde) posture provides a performance advantage when striking with the forelimbs, I measured the force and energy produced when human subjects struck from "quadrupedal" (i.e., pronograde) and bipedal postures. Downward and upward directed striking energy was measured with a custom designed pendulum transducer. Side and forward strikes were measured with a punching bag instrumented with an accelerometer. When subjects struck downward from a bipedal posture the work was 43.70±12.59% (mean ± S.E.) greater than when they struck from a quadrupedal posture. Similarly, 47.49±17.95% more work was produced when subjects struck upward from a bipedal stance compared to a quadrupedal stance. Importantly, subjects did 229.69±44.19% more work in downward than upward directed strikes. During side and forward strikes the force impulses were 30.12±3.68 and 43.04±9.00% greater from a bipedal posture than a quadrupedal posture, respectively. CONCLUSIONS/SIGNIFICANCE: These results indicate that bipedal posture does provide a performance advantage for striking with the forelimbs. The mating systems of great apes are characterized by intense male-male competition in which conflict is resolved through force or the threat of force. Great apes often fight from bipedal posture, striking with both the fore- and hindlimbs. These observations, plus the findings of this study, suggest that sexual selection contributed to the evolution of habitual bipedalism in hominins

    Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT

    Get PDF
    The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bone. MicroRNAs (miRNAs) play a crucial role in many tumor metastases. The importance of miRNAs in bone metastasis of PCa has not been elucidated to date. We investigated whether the expression of certain miRNAs was associated with bone metastasis of PCa. We examined the miRNA expression profiles of 6 primary and 7 bone metastatic PCa samples by miRNA microarray analysis. The expression of 5 miRNAs significantly decreased in bone metastasis compared with primary PCa, including miRs-508-5p, -145, -143, -33a and -100. We further examined other samples of 16 primary PCa and 13 bone metastases using real-time PCR analysis. The expressions of miRs-143 and -145 were verified to down-regulate significantly in metastasis samples. By investigating relationship of the levels of miRs-143 and -145 with clinicopathological features of PCa patients, we found down-regulations of miRs-143 and -145 were negatively correlated to bone metastasis, the Gleason score and level of free PSA in primary PCa. Over-expression miR-143 and -145 by retrovirus transfection reduced the ability of migration and invasion in vitro, and tumor development and bone invasion in vivo of PC-3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. Their upregulation also increased E-cadherin expression and reduced fibronectin expression of PC-3 cells which revealed a less invasive morphologic phenotype. These findings indicate that miRs-143 and -145 are associated with bone metastasis of PCa and suggest that they may play important roles in the bone metastasis and be involved in the regulation of EMT Both of them may also be clinically used as novel biomarkers in discriminating different stages of human PCa and predicting bone metastasis

    Behavioral, Ecological, and Evolutionary Aspects of Meat-Eating by Sumatran Orangutans (Pongo abelii)

    Get PDF
    Meat-eating is an important aspect of human evolution, but how meat became a substantial component of the human diet is still poorly understood. Meat-eating in our closest relatives, the great apes, may provide insight into the emergence of this trait, but most existing data are for chimpanzees. We report 3 rare cases of meat-eating of slow lorises, Nycticebus coucang, by 1 Sumatran orangutan mother–infant dyad in Ketambe, Indonesia, to examine how orangutans find slow lorises and share meat. We combine these 3 cases with 2 previous ones to test the hypothesis that slow loris captures by orangutans are seasonal and dependent on fruit availability. We also provide the first (to our knowledge) quantitative data and high-definition video recordings of meat chewing rates by great apes, which we use to estimate the minimum time necessary for a female Australopithecus africanus to reach its daily energy requirements when feeding partially on raw meat. Captures seemed to be opportunistic but orangutans may have used olfactory cues to detect the prey. The mother often rejected meat sharing requests and only the infant initiated meat sharing. Slow loris captures occurred only during low ripe fruit availability, suggesting that meat may represent a filler fallback food for orangutans. Orangutans ate meat more than twice as slowly as chimpanzees (Pan troglodytes), suggesting that group living may function as a meat intake accelerator in hominoids. Using orangutan data as a model, time spent chewing per day would not require an excessive amount of time for our social ancestors (australopithecines and hominids), as long as meat represented no more than a quarter of their diet
    corecore