43 research outputs found

    Size and shape analysis of error-prone shape data

    Get PDF
    We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement error, we propose the conditional score method for matching configurations, which guarantees consistent inference under mild model assumptions. The effects of measurement error on inference from naive Procrustes analysis and the performance of the proposed method are illustrated via simulation and application in three real data examples. Supplementary materials for this article are available online

    The Morphometric Synthesis for landmarks and edge-elements in images

    Full text link
    Over the last decade, techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry, and computer graphics have been combined in a coherent new system of tools for the biometric analysis of landmarks , or labelled points, along with the biological images in which they are seen. Multivariate analyses of samples for all the usual scientific purposes - description of mean shapes, of shape variation, and of the covariation of shape with size, group, or other causes or effects - may be carried out very effectively in the tangent space to David Kendall's shape space at the Procrustes average shape. For biometric interpretation of such analyses, we need a basis for the tangent space that is Procrustes-orthonormal, and we need graphics for visualizing mean shape differences and other segments and vectors there; both of these needs are managed by the thin-plate spline. The spline also links the biometrics of landmarks to deformation analysis of curves in the images from which the landmarks originally arose. This article reviews the principal tools of this synthesis in a typical study design involving landmarks and edge information from a microfossil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75091/1/j.1365-3121.1995.tb00535.x.pd

    The ‘mosaic habitat’ concept in human evolution: past and present

    Get PDF
    The habitats preferred by hominins and other species are an important theme in palaeoanthropology, and the ‘mosaic habitat’ (also referred to as habitat heterogeneity) has been a central concept in this regard for the last four decades. Here we explore the development of this concept – loosely defined as a range of different habitat types, such as woodlands, riverine forest and savannah within a limited spatial area– in studies of human evolution in the last sixty years or so. We outline the key developments that took place before and around the time when the term ‘mosaic’ came to wider palaeoanthropological attention. To achieve this we used an analysis of the published literature, a study of illustrations of hominin evolution from 1925 onwards and an email survey of senior researchers in palaeoanthropology and related fields. We found that the term mosaic starts to be applied in palaeoanthropological thinking during the 1970’s due to the work of a number of researchers, including Karl Butzer and Glynn Isaac , with the earliest usage we have found of ‘mosaic’ in specific reference to hominin habitats being by Adriaan Kortlandt (1972). While we observe a steady increase in the numbers of publications reporting mosaic palaeohabitats, in keeping with the growing interest and specialisation in various methods of palaeoenvironmental reconstruction, we also note that there is a lack of critical studies that define this habitat, or examine the temporal and spatial scales associated with it. The general consensus within the field is that the concept now requires more detailed definition and study to evaluate its role in human evolution

    Analysis of pharmacologically active cannabinoids by GC-MS

    No full text
    corecore