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Size and Shape Analysis of Error-Prone Shape Data
Jiejun DU, Ian L. DRYDEN, and Xianzheng HUANG

We consider the problem of comparing sizes and shapes of objects when landmark data are prone to measurement error. We show that naive
implementation of ordinary Procrustes analysis that ignores measurement error can compromise inference. To account for measurement
error, we propose the conditional score method for matching configurations, which guarantees consistent inference under mild model
assumptions. The effects of measurement error on inference from naive Procrustes analysis and the performance of the proposed method
are illustrated via simulation and application in three real data examples. Supplementary materials for this article are available online.
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1. INTRODUCTION

Data capturing the size and shape of an object are of great
interest in many branches of science. For instance, facial recog-
nition as a routine task in forensics relies on shape data of
faces; chemists study shapes of molecules to understand and
manipulate chemical properties; and study on shapes of com-
plex organisms is an important part of research in biology and
medicine. One approach that has a long history for character-
izing sizes and shapes entails defining landmarks on an object,
the collection of which is referred to as the configuration of
the object (Kendall 1984; Bookstein 1991; Dryden and Mardia
1998). Then the shape data for this object consist of the geo-
metric information of these landmarks in the configuration after
removing location, rotation, and (possibly) scale. This way of
measuring shape data has been adopted in biology, for example,
among many other fields where applied scientists understand
well the choice and interpretation of landmarks. Even though
usually there are solid scientific grounds or mathematical moti-
vations for the choice of landmarks, locating them on a subject
and/or measuring their relative locations is often prone to error.
This results in shape data as an error-contaminated measure of
the true underlying shape of an object.

Assuming shape data free of measurement error, ordinary
Procrustes analysis (Goodall 1991), referred to as OPA, is a con-
ventional approach to match one configuration onto the other,
which is an important step in size and shape comparisons among
different objects. This method involves translation, rotation, and
scaling of one configuration to match it onto the other config-
uration as closely as possible. In the presence of measurement
error, naive implementation of OPA matches the noisy version

© Jiejun Du, Ian Dryden, Xianzheng Huang
This is an Open Access article. Non-commercial re-use, distribution, and

reproduction in any medium, provided the original work is properly attributed,
cited, and is not altered, transformed, or built upon in any way, is permitted. The
moral rights of the named author(s) have been asserted.

Jiejun Du is Statistician, K&L Consulting Inc., Fort Washington, PA 19034
(E-mail: jiejun.du@gmail.com). Ian L. Dryden is Professor, School of Mathe-
matical Sciences, University of Nottingham, University Park, Nottingham, NG7
2RD, UK (E-mail: Ian.Dryden@nottingham.ac.uk). Xianzheng Huang is As-
sociate Professor, Department of Statistics, University of South Carolina, NC
29208 (E-mail: huang@stat.sc.edu). The authors are grateful to the associate
editor and two anonymous referees for their helpful comments on the article.
Ian L. Dryden acknowledges the support of a Royal Society Wolfson Research
Merit Award WM110140 and the Engineering and Physical Sciences Research
Council grant EP/K022547/1. Xianzheng Huang acknowledges the supported
of NSF grant DMS-1006222.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

of a configuration onto the other one. A natural question is
whether or not this naive matching can reveal the same in-
formation regarding size and shape comparisons as when one
matches the error-free configurations. For example, in the study
of rat skulls (Bookstein 1991; Kenobi, Dryden, and Le 2010;
Mardia et al. 2013), X-rays of rat skulls were recorded from age
7 days to 150 days, and it is of interest to estimate the change
in size and shape of the skull as a rat grows. Assuming con-
figurations of skulls are measured precisely, if one implements
OPA to match the skull of a rat recorded at an earlier time onto
the other skull of the same rat recorded later, then the amount
of scaling entailed in OPA reflects the amount of growth of the
skull during this time window. Suppose the reality is that con-
figurations of skulls cannot be measured precisely, and thus the
observed configurations are noisy surrogates of the unobserved
true configurations. To study the growth pattern of rat skulls,
it is important to understand the effects of measurement error
on inference from naive OPA. We will show in Section 3 that
matching two error-contaminated configurations via naive OPA
can mask important distinctions between two configurations.
This motivates new proposals that can account for measurement
error when comparing sizes and shapes of objects. Note that for
nontrivial matching the number of landmarks is more than the
number of dimensions in which the data lie.

The remainder of the article is organized as follows. In Sec-
tion 2 models for shape data accounting for measurement error
are formulated for the purpose of matching two true configura-
tions in two or three dimensions. Results regarding the effects of
measurement error on inference from naive OPA are presented
in Section 3. In Section 4, we propose the conditional score
method. Simulation studies are reported in Section 5 to illus-
trate the performance of the proposed methods in comparison
with naive OPA. These methods are applied to three real data
examples in Section 6. We conclude the article with discussions
of our findings and future research directions in Section 7.

2. MEASUREMENT ERROR MODELS

2.1 Models for Two-Dimensional Size-and-Shape Data

For a two-dimensional configuration, it is mathematically
convenient to denote the location of a landmark by a complex
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number, with the real and imaginary parts representing the x-
and y-coordinates of the landmark, respectively. Let X and Y be
two configurations of interest, each consisting of K(≥ 3) land-
marks. With the complex-value representation, both X and Y are
elements in the K-dimensional complex space, CK . More specif-
ically, X = (X1, . . . , XK )t and Y = (Y1, . . . , YK )t , where Xl ,
Yl ∈ C1 correspond to the lth landmark in the configurations,
for l = 1, . . . , K . To match X onto Y via OPA, the following
linear model that relates Y and X is assumed,

Y = β01K + β1X + ε, (1)

where β0 ∈ C1 is the translation parameter, β1( �= 0) ∈ C1 is
the scale-and-rotation parameter, and multiplying β1 by X in
effect scales and rotates X, 1K is the K × 1 vector of ones, and
ε = (ε1, . . . , εK )t ∈ CK is the mean-zero random error. The
interpretation of the complex multiplication in (1), β1X, can
be made more transparent by looking into the lth landmark
(l = 1, . . . , K), for which β1Xl is equivalent to ‖β1‖eiθXl , and
in real arithmetic,

‖β1‖
[

cos θ sin θ

− sin θ cos θ

][
Re(Xl)
Im(Xl)

]
,

where, for t ∈ C1, ‖t‖ is the norm of t, Re (t) and Im (t) denote
the real and imaginary part of t, respectively, and θ ∈ [0, 2π )
is the rotation parameter. Under the model given by (1), match-
ing X onto Y as closely as possible can be formulated as a
least-square problem, where one minimizes the squared dis-
tance given by ‖Y − β01K − β1X‖2 over β = (β0, β1)t ∈ C2.
Here, for A ∈ CK , denote by A∗ the transpose of the conjugate
of A, ‖A‖2 = A∗A is the squared Euclidean norm of A.

Solutions to the above least-square problem are the outcomes
of OPA (Dryden and Mardia 1998, sec. 5.2). In fact, OPA for
two-dimensional shape data can be viewed as the complex ver-
sion of the least-square method for real-value linear regression.
This intimate connection between OPA and real-value linear re-
gression leads us to formulate the upcoming measurement error
models for shape data, and further inspires our proposal of the
conditional score method, which has successes in drawing infer-
ence based on error-contaminated data modeled by real-value
regression models.

Instead of assuming X and Y are observed directly as in most
existing literature on shape analysis, we consider the scenario
where the actual observed configurations result from contami-
nating the true configurations with measurement error. Measure-
ment error in Y does not cause complications from a modeling
perspective, as one may view such measurement error part of
ε in (1). Caution needs to be taken regarding measurement er-
ror in X however, for which the reasons will become clear in
Section 3. For notational convenience, henceforth, we only con-
sider X as the error-prone unobserved configuration, and denote
W = (W1, . . . ,WK )t ∈ CK as an error-contaminated measure
of X. More specifically, we assume classical measurement error
(Carroll et al. 2006, sec. 1.2) and W relates to X according to

W = X + U, (2)

where U = (U1, . . . , UK )t ∈ CK is the mean-zero nondifferen-
tial measurement error (Carroll et al. 2006, sec. 2.5), indepen-
dent of X and ε. Together (1) and (2) give the two component

models of the measurement error model for the observed con-
figurations (Y, W).

2.2 Models for Three-Dimensional Size-and-Shape Data

Conventionally, a three-dimensional configuration of K(≥ 4)
landmarks is denoted by a K × 3 real matrix. Take configuration
X as an example, the lth row of X, for l = 1, . . . , K , is Xt

l ,
where Xl is an element in the three-dimensional real space R3

that consists of the x-, y-, and z-coordinates of the lth landmark,
respectively. A more compact representation of X is attained
by using quaternions (Horn 1987; Zhang 1997), which can be
viewed as a generalization of complex numbers. Let q = a +
bi + cj + dk be a quaternion number in the one-dimensional
quaternion space Q1, where i, j, k are three imaginary units,
a, b, c, and d are in R1, among which a and (b, c, d) are
the real part and imaginary parts of q, respectively. Denote by
X ∈ QK the quaternion version of X, then X = (X1, . . . ,XK )t ,
where the real part of Xl ∈ Q1 is zero and the imaginary parts
of it correspond to the three elements in Xl , for l = 1, . . . , K .
Similarly, let Y , E , W , and U be the K × 1 quaternion versions
of K × 3 real matrices Y, ε, W, and U, respectively. Then
the classical measurement error model for the observed three-
dimensional configurations (Y, W) consists of the following
two component models,

Y = γ 1K + qX q̄ + E, (3)

W = X + U , (4)

where γ ∈ Q1 is the translation parameter with the real part
equal to zero, q ∈ Q1 is the scale-and-rotation parameter, and q̄

is the conjugate of q. For a quaternion q = a + bi + cj + dk, its
conjugate is defined as q̄ = a − bi − cj − dk. Appendix A of
the supplementary materials provides a brief tutorial of quater-
nion arithmetic and the geometric interpretation of quaternion
multiplication.

Alternatively, one may convert the above measurement error
model to its real-value version by using the fact that, for the
lth landmark (l = 1, . . . , K), qXl q̄ is equivalent to QXl (Kunze
and Schaeben 2004), where

Q =
⎡
⎣a2+b2−c2−d2 2(bc − ad) 2(ac + bd)

2(bc + ad) a2−b2+c2−d2 2(dc − ab)
2(bd − ac) 2(ab + cd) a2−b2−c2+d2

⎤
⎦.

This yields the following model equivalent to (3),

Y = 1Kβ
t
0 + XQt + ε, (5)

where β0 ∈ R3 is the translation parameter, of which the three
elements are the imaginary parts of γ in (3), and ε is the K × 3
random error. The real-value version of (4) is simply (2) with
W, X, and U now all being K × 3 real-value matrices.

Finally, the conventional OPA for three-dimensional shape
data is developed based on the following model,

Y = 1Kβ
t
0 + β1X� + ε, (6)

where β1(> 0) ∈ R1 is the scale parameter, � is a 3 × 3 rotation
matrix in SO(3), and SO(3) denotes the special orthogonal group
(Dryden and Mardia 1998, sec. 4.1). To match X onto Y via OPA,
one minimizes the squared distance given by ‖Y − 1Kβ

t
0 −

β1X�‖2 over β0, β1, and �. Here, for a K × 3 real matrix A,
‖A‖2 is the squared Euclidean Frobenius norm of A defined by
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tr(AtA), where “tr” refers to the trace of a matrix. Comparing
(5) and (6) reveals that XQt in (5) corresponds to the same
operations on X implemented by β1X� in (6), and β1 = a2 +
b2 + c2 + d2.

3. NAIVE PROCRUSTES ANALYSIS

3.1 Bias Analysis in Two-Dimensional Size-and-Shape
Matching

Matching two-dimensional X onto Y via OPA yields an es-
timator of β given by β̂ = (β̂0, β̂1)t = (X∗

DXD)−1X∗
DY, where

XD = [1K X] is the K × 2 complex-value design matrix asso-
ciated with (1) (Dryden and Mardia 1998, sec. 3.2). Naive im-
plementation of OPA using the observed configurations (Y, W)
results in a naive estimator of β given by β̂W = (β̂0,W , β̂1,W )t =
(W∗

DWD)−1W∗
DY, where WD = [1K W].

To study the effects of measurement error on naive OPA in a
more concrete setting, we assume landmarks in X, ε, and U in (1)
and (2) follow complex normal (CN ) distributions (Goodman
1963; Kent 1994; Konno 2007). More specifically, it is assumed
that, for l = 1, . . . , K , Xl ∼ CN (μl, 2σ 2

x ), εl ∼ CN (0, 2σ 2
ε ),

and Ul ∼ CN (0, 2σ 2
u ), independently. For a complex normal

random variable, its variance being 2σ 2 explicitly implies that
the variance of the real and imaginary parts of it are both σ 2, and
these two parts are uncorrelated (Goodman 1963, Example 3.1).
Although the assumption of isotropic variance for each of these
complex random quantities may not hold in all applications, it
is a sensible starting point from which we were able to discover
the following results that provide some practically important
insights on the impact of measurement error.

Denote byμX = (μ1, . . . , μK )t the mean of X, where K ≥ 3.
Proposition 3.1 given next is derived under a special case where
μX = μ1K for μ ∈ C1. The follow-up Proposition 3.2 is estab-
lished under a general setting where one allows μl differ across
l = 1, . . . , K . Expectations appear in both propositions are de-
fined with respect to the distribution of (Y, W) under the above
normality assumptions on landmarks.

Proposition 3.1. Under the above complex normality as-
sumptions on Xl , εl , and Ul , for l = 1, . . . , K , if μX = μ1K ,
where μ ∈ C1, then

E(β̂0,W ) = β0 +
(

1 − σ 2
x

σ 2
x + σ 2

u

)
μβ1, (7)

E(β̂1,W ) = σ 2
x

σ 2
x + σ 2

u

β1. (8)

Results in Proposition 3.1 are the same in spirit as those
derived for real-value simple linear regression with classical
measurement error (Fuller 1987, sec. 1.1). The proof, omitted
here, is parallel with that given in Fuller (1987, sec. 1.1) except
for the change from real normal distributions to complex normal
distributions for relevant random variables in our setting (see Du
2012). An important quantity arising from Fuller’s derivations
that also emerges in (7) and (8) is the so-called reliability ratio,
σ 2

x /(σ 2
x + σ 2

u ), denoted by λ, which quantifies the severity of er-
ror contamination on the unobserved scalar predictor in simple
linear regression. The same interpretation of λ carries over to
two-dimensional shape analyses if one assumes that error con-

tamination on all landmarks of a configuration in both x- and
y-coordinates are comparable, which is a realistic assumption in
many applications. Because λ ∈ [0, 1], (8) indicates an attenu-
ation effect of measurement error on the naive estimator of β1,
which is a well-known consequence of ignoring measurement
error when estimating the slope parameter in real-value simple
linear regression (Carroll et al. 2006, sec. 3.2). In our context of
matching two configurations, the attenuation effect translates to
underestimating the amount of scaling when matching X onto
Y. Because the expectation in (8) is a scalar multiple of β1,
the naive rotation is not compromised by measurement error in
terms of unbiasedness. Finally, according to (7), measurement
error does not compromise (naive) inference on β0 either when
μ = 0.

Although it is theoretically reassuring to have Proposition 3.1
in agreement with existing findings in the context of simple lin-
ear regression, the assumption ofμX = μ1K is overly restrictive
for shape data as it forces an object shrink to a point after ran-
dom noise is removed. It is practically and theoretically more
interesting to relax this assumption. However, with μX �= μ1K ,
E(β̂W ) cannot be easily derived in closed form. Proposition 3.2
provides the dominating terms of this expectation when σ 2

x + σ 2
u

is small.

Proposition 3.2. Under the above complex normality as-
sumptions on Xl , εl , and Ul , for l = 1, . . . , K , if μX =
(μ1, . . . , μK )t �= μ1K , where μ ∈ C1, then

E(β̂0,W ) = β0 + 2σ 2
u μ̌X

‖μX,c‖2

(
K − 1 − 1

K

)

β1 + o
(
σ 2

x + σ 2
u

)
, (9)

E(β̂1,W ) = β1 − 2σ 2
u

‖μX,c‖2

{
K − 5 +

(
2 + 2

K

) ‖μX‖2

‖μX,c‖2

}

β1 + z‘o
(
σ 2

x + σ 2
u

)
, (10)

where μ̌X = 1t
KμX/K and μX,c = μX − μ̌X1K .

The proof for Proposition 3.2 is relegated to Appendix B of
the supplementary materials. Note that, for a centered configu-
ration X, one has μ̌X = 0 and thus μX = μX,c. In this case, the
dominating bias in β̂0,W in (9) vanishes. Moreover, according to
(10), the dominating bias in β̂1,W reduces to

− 2σ 2
u

‖μX,c‖2

(
K − 3 + 2

K

)
β1, (11)

which is negative for K ≥ 3, suggesting a negative (dominat-
ing) bias in β̂1,W . This is reminiscent of the attenuation effect of
measurement error on naive scale estimation implied by Propo-
sition 3.1. Furthermore, (11) indicates that, with K, β1, and σ 2

u

fixed, the attenuation is less noticeable when ‖μX,c‖ is larger,
or, equivalently, when the landmarks in the mean configuration
μX spread out more around the center. In summary, Proposi-
tion 3.2 suggests that ignoring measurement error in the error-
prone-centered configuration is less harmful if this unobserved
configuration comes from a population whose mean configura-
tion consists of more diffuse landmarks. Otherwise, naive OPA
can substantially underestimate β1. As centering configurations
(in two or three dimensions) is routinely done in practice, we
assume centered X and Y henceforth.
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3.2 Bias Analysis in Three-Dimensional Size-and-Shape
Matching

The traditional OPA that matches three-dimensional configu-
rations, X and Y, yields the following estimators of the matching
parameters appearing in (6) (Dryden and Mardia 1998, sec. 5.2),

β̂0 = 0, �̂ = TVt , β̂1 = tr(YtX�̂)

tr(XtX)
, (12)

where T, V ∈ SO(3) result from the singular value decompo-
sition, YtX = ‖Y‖‖X‖V�Tt , in which � = diag(λ1, λ2, λ3),
and λ1 ≥ λ2 ≥ |λ3| are square roots of the eigenvalues of
XtYYtX, among which only λ3 is not necessarily positive (Dry-
den and Mardia 1998, sec. 4.2). Note that λ3 is negative if
and only if det(XtY) < 0, and the optimal rotation is unique
if λ2 + λ3 > 0, where the eigenvalues are nondegenerate and
optimally signed (Kent and Mardia 2001), which we assume
throughout. It follows that naive OPA matches W onto Y and
yields the following counterpart naive estimators,

β̂0,W = 0, �̂W = TW Vt
W , β̂1,W = tr(Yt

W�̂W )

tr(WtW)
,

(13)
where TW and VW are similarly defined as T and V in (12) with
X replaced by W.

In what follows, we view the estimators in (12) as the ideal
estimators, which can be computed only when the error-free
configurations, that is, the true configurations (Y, X), are ob-
served. Assuming common measurement error variance, σ 2

u , for
all K(≥ 4) landmarks of X in all three (x-, y-, and z-) coordinates,
we investigate how the naive estimators compare with the ideal
estimators given the true configurations. Our findings are sum-
marized in the following proposition, where the expectation is
conditional on (Y, X), which makes the distributional assump-
tion on Xl and εl (l = 1, . . . , K) imposed in Propositions 3.1
and 3.2 irrelevant here.

Proposition 3.3. Under the assumption of small σu,

�̂W = �̂ + σuTDVt + σ 2
u TD2Vt /2 + O

(
σ 3

u

)
, (14)

E(β̂1,W ) = β̂1 − (3K − 2)σ 2
u

‖X‖2
β̂1 + O

(
σ 3

u

)
, (15)

where D = [dij ]i,j=1,2,3 has elements given by dij = (cji −
cij )/(λi + λj ) if i �= j , and dij = 0 otherwise, in which cij , for
i, j = 1, 2, 3, are elements in C = VtYtZT/(‖X‖‖Y‖), and
Z = U/σu.

The result in (14) is a direct extension of Proposition 3 in
Kent and Mardia (2001), and (15) follows from (13) and (14),
which are elaborated in the proof provided in Appendix C of
the supplementary materials. Note that, given (Y, X), Z is the
only random quantity in C, thus the dominating bias terms in
(14) are random merely due to the dependence of D on Z (via
C). Noticing that Z has mean zero and dij ’s are linear in cij ’s
(i, j = 1, 2, 3), the second term on the right-hand side of (14)
has mean zero given (Y, X). This implies that �̂W is expected to
be close to the ideal estimator �̂ when error contamination is not
substantial. In contrast, the dominating bias in β̂1,W according to
(15) can be more noticeable. More specifically, this dominating
bias is always negative, and is smaller in absolute value when

‖X‖ is larger, with K, β̂1, and σ 2
u fixed. These findings bear

obvious resemblance with the conclusions drawn based on the
dominating bias in (11) under Proposition 3.2.

The consent of Propositions 3.1–3.3 is that the estimator of
the scale parameter resulting from naive OPA is most affected
in terms of consistency by measurement error among all estima-
tors involved in matching configurations. This raises concerns
especially when the size of objects is the focal point of a study,
such as in the study of rat skulls’ growth described in Section
1, which was recently revisited by Mardia et al. (2013) who
carried out a Bayesian analysis with size being a key concept in
their investigation. In the upcoming section, we derive unbiased
score functions for the measurement error models formulated
in Section 2, followed by estimating equations based on these
scores. The goal is to obtain consistent estimators of the param-
eters involved in matching X onto Y using error-contaminated
data (Y, W). In the sequel, denote by � the collection of un-
known parameters in the first component model, (1) and (5) (or
(3)), of the measurement error model.

4. CONDITIONAL SCORE METHOD

4.1 Conditional Score for Two-Dimensional Shape Data

Following the derivations of conditional score for real-value
linear measurement error models in Carroll et al. (2006, sec.
7.2), but using complex normal whenever real normal is used
in their derivations, we first establish that, if one views β1,
σ 2

ε , and σ 2
u as known constants and Xl as unknown pa-

rameters, then, for l = 1, . . . , K , 	l = Wl + β̄1Ylσ
2
u /σ 2

ε is a
sufficient statistic for Xl , where t̄ denotes the conjugate of
t for t ∈ C1. Then, under the normality assumption on εl

and Ul , we derive the first two moments of Yl conditioning
on 	l given by E(Yl|	l,�) = (β0 + β1	l)/(1 + ‖β1‖2σ 2

u /σ 2
ε )

and var(Yl|	l,�) = 2σ 2
ε /(1 + ‖β1‖2σ 2

u /σ 2
ε ), for l = 1, . . . , K .

Finally, using the idea of generalized method of moments
(Hansen 1982), we define the following complex-value score
function, referred to as the conditional score, for l = 1, . . . , K ,

ψ(Yl, 	l, �) =

⎡
⎢⎢⎢⎣

Yl − E(Yl|	l,�)
{Yl − E(Yl|	l,�)}	l

K − p

K
− ‖Yl − E(Yl|	l,�)‖2

var(Yl|	l,�)

⎤
⎥⎥⎥⎦,

where p is the number of parameters in� excluding σ 2
ε . By con-

struction, ψ(Yl, 	l, �) is an unbiased complex vector-value
score. Following M-estimation theory (Huber 1967), the solu-
tion to the system of score equations,

∑K
l=1 ψ(Yl, 	l, �) = 0,

is a consistent estimator of �, denoted by �̂ and referred to as
the conditional score estimator. A variance estimator for �̂ can
be straightforwardly derived following the sandwich variance
construction for M-estimators (Stefanski and Boos 2002).

An appealing feature of the above line of derivation is that its
validity does not depend on the distribution of the unobserved
configuration X, as {Xl}Kl=1 are viewed as unknown parameters
and conditioned out by introducing {	l}Kl=1.
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4.2 Conditional Score for Three-Dimensional Shape
Data

To derive the conditional score associated with the three-
dimensional measurement error model, we alternate between
the quaternion version of the model, that is, (3) along with (4),
and the real version given by (5) in conjunction with (2). Simi-
lar to the normality assumptions in Sections 3.1 and 4.1, using
the real-value representation for a configuration, we assume
εl ∼ N (0, �ε) and Ul ∼ N (0, �u), for l = 1, . . . , K , indepen-
dently, where�ε and�u are 3 × 3 variance-covariance matrices
that can be anisotropic. As commented at the end of Section 4.1,
which is also implied in the proof in Appendix D in the supple-
mentary materials, no distributional assumption on Xl is needed
for the validity of the conditional score method.

Under the above distributional assumptions, we first prove in
Appendix D that

	l = Wl +�uQt�−1
ε Yl (16)

is a sufficient statistic for Xl if one views Xl as a parame-
ter whereas all parameters in (16) are known constants. Then
we derive the first two moments of Yl given 	l , which real-
izes conditioning out Xl due to the sufficiency of 	l . These
conditional moments are, for l = 1, . . . , K , E(Yl|	l ,�) =
β0 + Q (I3 + �uQt�−1

ε Q)−1(	l −�uQt�−1
ε β0) and cov(Yl |

	l ,�) = �ε − Q (I3 + �uQt�−1
ε Q)−1�uQt , where I3 is the

3 × 3 identity matrix. Next, following the same strategy em-
ployed in Section 4.1 for score construction, we obtain the fol-
lowing conditional score for three-dimensional shape data, for
l = 1, . . . , K ,

ψ(Yl , 	l , �) =
⎡
⎢⎢⎢⎣

Yl − E(Yl |	l ,�)

{Yl − E(Yl |Dl ,�)}Dl(
K−p

K

)
cov(Yl |	l ,�)−{Yl − E(Yl |	l ,�)}t {Yl −E(Yl |	l ,�)}

⎤
⎥⎥⎥⎦,

(17)

where p is the number of parameters in � excluding those
in �ε , and the second (block) component of the score
vector uses quaternion multiplication to attain a concise
presentation, in which Dl is the quaternion version of 	l .
For two quaternions, qr = ar + br i + crj + drk, for r = 1,
2, the quaternion multiplication used in (17) is defined by
q1q2 = a1a2 − b1b2 − c1c2 − d1d2 + (b1a2 + a1b2 − d1c2 +
c1d2)i + (−b1d2 + a1c2 + d1b2 + c1a2)j + (−c1b2 + d1a2 +
a1d2 + b1c2)k. Finally, we have the system of estimating
equations,

∑K
l=1 ψ(Yl , 	l , �) = 0, the solution to which is a

consistent estimator of � referred to as the conditional score
estimator, whose variance estimator is derived according to the
sandwich variance construction for M-estimators.

4.3 Measurement Error Variance Estimation

In Sections 4.1 and 4.2, parameters in the first component
model of a measurement error model, (1) and (5) (or (3)), are the
only unknown parameters estimated by solving the conditional
score equations. In practice, the measurement error variance(s)
involved in the second component model, (2) or (4), is (are)
typically unknown. Hence, it is necessary to estimate σ 2

u or �u

first to implement the proposed methods. It is well understood

in the measurement error community that, for linear models,
when there is only one error-contaminated measure for each
value of the true covariate, the measurement error variance is
intrinsically unidentifiable using data (Y, W). When there are
multiple measures for each value of the true covariate, Carroll
et al. (2006) provided an estimator of the measurement error
variance in the context of real-value linear measurement error
models (Carroll et al. 2006, eq. (4.3)).

Tailored for shape data, we develop a new strategy for estimat-
ing the measurement error variance when replicate measures are
available. For notational simplicity, two-dimensional shape data
are used next to illustrate the estimation, where σ 2

u is the only
unknown variance parameter in (2). Moreover, it is assumed that
there are two replicate measures for the true configuration X,
denoted by W1,w and W2,w, where the second subscript “w” is
added to distinguish them from the notation for the lth landmark
of W, Wl , used in Section 2.1. Viewing each replicate measure
as a result of some transformation of X, one may assume that

W1,w = α0,11K + α1,1X + U1,w, (18)

W2,w = α0,21K + α1,2X + U2,w, (19)

where α0,r ∈ C1 is the translation parameter, α1,r ( �= 0) ∈ C1

is the scale-and-rotation parameter, and Ur,w ∈ CK is the mea-
surement error in the rth replicate, for r = 1, 2. Combining (18)
and (19) to cancel X yields

W2,w = γ01K + γ1W1,w + Uw, [6pt] (20)

where γ0 = α0,2 − α0,1α1,2/α1,1, γ1 = α1,2/α1,1, and Uw =
U2,w − U1,wα1,2/α1,1. Under the assumption that all 2K land-
marks in {Ur,w, r = 1, 2} are independent and identically
distributed according to CN (0, 2σ 2

u ), the K landmarks in
Uw are independent and identically distributed according to
CN {0, 2σ 2

u (1 + ‖γ1‖2)}. Now one may implement OPA to
match W1,w onto W2,w and obtain estimates of γ0 and γ1,
denoted by γ̂0 and γ̂1, respectively. Then the error variance
in (20), that is, 2σ 2

u (1 + ‖γ1‖2) as a whole, can be esti-
mated using the mean residual squared distance given by
‖W2,w − γ̂01K − γ̂1W1,w‖2/K . It follows that an estimator of
σ 2

u is σ̂ 2
u = ‖W2,w − γ̂01K − γ̂1W1,w‖2/{2K(1 + ‖γ̂1‖2)}.

We conducted extensive simulation studies to experiment
with this strategy (results reported in Du 2012). Empirical ev-
idence from these experiments suggests that this strategy can
yield very accurate estimate of σ 2

u when K is moderate or large
(say, K ≥ 30) and the reliability ratio λ is above 0.5. When there
are R(> 2) replicate measures for X, one may follow the above
procedure to estimate σ 2

u repeatedly using all different pairs of
replicates, then take the average of these resulting estimates as
the final σ̂ 2

u . After a final estimate of σ 2
u is computed, one may

treat one of the replicate measures of X as W in Section 4.1 and
plug in σ̂ 2

u as σ 2
u . Alternatively, one may use the average of all

R replicate measures of X as W and plug in σ̂ 2
u /R as σ 2

u when
implementing the method proposed in Section 4.1. Parallel ar-
guments carry over to the case with three-dimensional shape
data to obtain an estimate of the measurement error variance to
be plugged in the conditional scores in Section 4.2. To focus
on comparing the conditional score method with naive OPA, we
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assume the measurement error variance known in the simulation
studies presented in the upcoming section.

5. EMPIRICAL EVIDENCE

5.1 Simulation Studies for Two-Dimensional Shape Data

In this section, we present simulation studies under the gen-
eral setting in Proposition 3.2. We also include simulation stud-
ies under the special setting with μX = μ1K as in Proposition
3.1 in Appendix E in the supplementary materials. The goal of
these experiments is to empirically illustrate properties of the
estimators from naive OPA and the performance of the condi-
tional score method described in Section 4.1. All simulations
reported in this article are conducted using R (R Development
Core Team 2012) or in SAS 9.2, and the shapes library (Dryden
2012) is used to implement (naive) OPA.

To create true configurations, we first generate
{Re(μl), Im(μl)}, for l = 1, . . . , 10, independently from
uniform(−g, g), where g = 5, 10. Using one set of realiza-
tions, {μl}10

l=1, we create a configuration X with landmarks
Xl ∼ CN (μl, 2), for l = 1, . . . , 10. Given one simulated X,
another configuration Y is generated according to (1) with
β0 = 1 + 2i, β1 = 2 + i, and {εl}10

l=1 generated independently
from CN (0, 2). Finally, an error-contaminated version of
X, namely, W, is created according to (2) with {Ul}10

l=1
independently simulated from CN (0, 2σ 2

u ), where σ 2
u is set at

different values to attain the reliability ratio λ = 0.5, 0.8, and
1. Note that W coincides with X when λ = 1. Naive estimates,
�̂W = (β̂0,W , β̂1,W , σ̂ 2

ε,W )t , and conditional score estimates,
�̂ = (β̂0, β̂1, σ̂ 2

ε )t , of the parameters in (1) are obtained based
on (Y, W) at each g–λ combination. Summary statistics of
these estimates from 1000 Monte Carlo (MC) replicates are
provided in Table 1.

When λ is as low as 0.5, results in Table 1 suggest significant
bias in β̂0,W and substantial attenuation in β̂1,W . As λ increases,
that is, as error contamination lessens, the bias in β̂W becomes
less significant. The comparison between the naive estimates
when g = 5 (upper half of Table 1) with those when g = 10
(lower half of Table 1) indicates that the former β̂W are more
biased than the latter. This comparison reinforces the implication
of the dominating bias in (11) under Proposition 3.2, which
is that β̂W is less compromised by measurement error when
μl’s are more variable across l = 1, . . . , K . In contrast, the
conditional score estimates β̂ exhibit performance one would
expect for a consistent estimator at all levels of g–λ combination.

In Appendix F in the supplementary materials, we present
simulation studies to illustrate the sandwich standard error es-
timates for conditional score estimators as stated in Section 4.
Empirical evidence there indicates that the sandwich standard
error estimators are reliable when K is not small (say, K ≥ 30).

5.2 Simulation Studies for Three-Dimensional Shape
Data

For three-dimensional shape data, each landmark μl(∈ Q1) in
μX consists of three imaginary parts, for l = 1, . . . , K , resulting
in a total of 3K real numbers in the entire mean configuration
μX. To control the spread of μl’s across l = 1, . . . , K , we gen-
erate these 3K real numbers independently from uniform(−g,

Table 1. Averages of naive estimates and averages of conditional
score estimates across 1000 Monte Carlo replicates from the

simulation study in Section 5.1. Numbers in parentheses are Monte
Carlo standard errors of the averages. True parameter values are
Re(β0) = 1, Im(β0) = 2, Re(β1) = 2, Im(β1) = 1, and σ 2

ε = 1.
“Naive” refers to naive estimates; “CSE” refers to conditional score

estimates

Re(β0) Im(β0) Re(β1) Im(β1) σ 2
ε

Elements in μX are generated from uniform(−5, 5)
λ = 0.5

Naive 0.96 (0.01) 2.10 (0.01) 1.82 (0.00) 0.91 (0.00) 5.42 (0.03)
CSE 1.01 (0.01) 2.03 (0.01) 1.99 (0.00) 1.00 (0.00) 1.26 (0.03)

λ = 0.8
Naive 1.00 (0.01) 2.02 (0.01) 1.95 (0.01) 0.98(0.00) 2.17 (0.01)
CSE 1.01 (0.01) 2.00 (0.01) 2.00 (0.00) 1.00(0.00) 1.09 (0.01)

λ = 1
Naive 0.99 (0.01) 2.00 (0.00) 1.99 (0.00) 1.00 (0.00) 0.98 (0.00)
CSE 0.99 (0.01) 2.00 (0.00) 2.00 (0.00) 1.00 (0.00) 1.04 (0.01)

Elements in μX are generated from uniform(−10, 10)
λ = 0.5

Naive 0.92 (0.01) 2.02 (0.01) 1.95 (0.01) 0.97 (0.01) 5.77 (0.03)
CSE 1.02 (0.01) 2.02 (0.01) 2.00 (0.00) 1.00 (0.01) 1.30 (0.03)

λ = 0.8
Naive 0.97 (0.01) 1.99 (0.01) 1.99 (0.01) 0.99 (0.00) 2.20 (0.01)
CSE 0.99 (0.01) 1.99 (0.01) 2.00 (0.01) 1.00 (0.00) 1.10 (0.01)

λ = 1
Naive 1.00 (0.01) 1.99 (0.00) 2.00 (0.00) 1.00 (0.00) 0.98 (0.00)
CSE 1.00 (0.00) 2.00 (0.00) 2.00 (0.00) 1.00 (0.00) 1.04 (0.00)

g), where g varies from 0 to 10, allowing one to observe the
effect of the spread among the landmarks in μX on different es-
timates. Given a set of simulated {μl}Kl=1, Xl is generated from
N (E(Xl), I3), where the three imaginary parts of μl constitute
E(Xl), for l = 1, . . . , K with K = 30. Then, based on a real-
ization of X, we generate Y according to (6) with β1 = 2.25,
�ε = σ 2

ε I3 with σ 2
ε = 1, and � as the rotation matrix corre-

sponding to the unit axis of rotation given by (0.5, 0.33, 0.8)t

and the angle of rotation equal to 60◦. Finally, W is obtained
based on (2) with �u to be specified in detail next. Slightly
different from simulations in Section 5.1, here we acknowledge
the fact that the true configurations (Y, X) have mean zero and
set β0 at zero in (5) and (6), rather than estimating β0. This
leaves one with unknown parameters including the scale param-
eter β1, the rotation �, and the model error variance σ 2

ε to be
estimated. Using each of 1000 pairs of configurations (Y, W)
at a fixed g–�u combination, we implement naive OPA and the
conditional score method to obtain two sets of estimates for the
unknown parameters.

With g = 5, Figure 1 depicts the MC average of β̂1 and that of
β̂1,W versus λ (left panel), the same comparison for estimates of
σ 2

ε (middle panel), and finally ‖�̂ − �‖ and its naive counterpart
(right panel), when �u = σ 2

u I3 with σ 2
u varying over a range to

produce λ increasing from 0.8 to 1 (in Figure 1(a)) or when �u

is equal to (in Figure 1(b))

h−1

⎡
⎣ 0.25 0.2 0.25

0.2 0.4 0.3
0.25 0.3 0.35

⎤
⎦, (21)
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Figure 1. Averages of naive estimates (dashed lines) and averages of conditional score estimates (solid lines) across 1000 Monte Carlo
replicates versus reliability ratio λ from simulations in Section 5.2, with g = 5, (a) �u = σ 2

u I3, and (b) �u given in (21). Dotted lines correspond
to the true parameter values.

where h varies from 1 to 30. As a multivariate generalization of
the reliability ratio, here we define λ = tr{(�x +�u)−1�x}/3,
where �x is the variance-covariance of Xl , which is equal to I3

in this experiment. As h increases from 1 to 30,�u given in (21)
results in λ varying from 0.800 to 0.989. Figure 2 presents the
same comparisons between estimates versus g when λ = 0.85,
which is obtained by first setting�u = (3/17)I3 (in Figure 2(a)),
and second (in Figure 2(b)) setting �u at

⎡
⎣ 0.19 −0.1 −0.2

−0.1 0.2 0.15
−0.2 0.15 0.25

⎤
⎦. (22)

In both Figures 1(a) and 2(a), with an isotropic diagonal �u,
estimates of � from two methods are very similar across the
board, a phenomenon that reconciles with the comments made
on (14) following Proposition 3.3. But when the assumption
of isotropic and independent measurement error along all three
coordinates is violated, as in both Figures 1(b) and 2(b), �̂W

is more compromised by measurement error. As for the other
parameters, Figure 1 suggests that naive estimates are more
adversely affected by measurement error at lower levels of λ,
and the conditional score estimates are much more robust and
accurate across different λ. Moreover, Figure 2 reveals that a
more diffuse μX can substantially alleviate bias in the naive
estimates of the matching parameters due to measurement error.

This observation is consistent with the implication of (15) under
Proposition 3.3.

6. APPLICATION TO REAL DATA

In what follows, we apply both naive OPA and the condi-
tional score method to three real data examples, with the first
two concerning two-dimensional configurations and the third
considering three-dimensional configurations.

Example 1 (Rat skulls). A detailed description of the data of
rat skulls brought up in Section 1 is given in Bookstein (1991).
Besides Kenobi, Dryden, and Le (2010) and Mardia et al. (2013),
many researchers have analyzed the data assuming the recorded
skull configurations are precise (Goodall and Lange 1989; Mon-
teiro 1999; Le and Kume 2000; Kent et al. 2001). For illustration
purposes, we assume that the skull configurations, each consist-
ing of eight landmarks, are contaminated with measurement er-
ror. The data include information on 18 rats, whose skulls were
X-rayed at ages 7, 14, 21, 30, 40, 60, 90, and 150 days. For each
rat, viewing the first (at age 7 days) recorded two-dimensional
skull configuration as W and each of the latter seven recorded
skull configurations as Y at that time point, we match W onto
Y at each of the seven later time points, first by implementing
OPA naively, then using the conditional score method. Because
the skull of each rat was X-rayed only once at each time point,
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Figure 2. Averages of naive estimates (dashed lines) and averages of conditional score estimates (solid lines) across 1000 Monte Carlo
replicates versus g from simulations in Section 5.2, with λ = 0.85 resulting from (a) �u = (3/17)I3, and (b) �u given in (22). Dotted lines
correspond to the true parameter values.

the measurement error variance is unidentifiable in this study.
As typically done in the measurement error literature when σ 2

u

cannot be estimated, we conduct a sensitivity analysis by setting
σ 2

u at different values, and we monitor how the naive inference
compares with inference from the conditional score method at
different assumed levels of σ 2

u . More specifically, at each time
point starting from age 14 days, we use data of all 18 rats to
estimate σ 2

x + σ 2
u . Then we set σ 2

u at two levels to attain the
estimated λ equal to 0.5 and 0.9. From a practical standpoint,
λ = 0.5 suggests severe measurement error contamination, and
λ = 0.9 implies moderate error contamination.

Figure 3 presents the estimated scale resulting from naive
OPA and that from the conditional score method across seven
time points at different levels of λ for two randomly selected rats.
The pictorial comparison between ‖β̂1‖ and ‖β̂1,W‖ highlights
one key finding in Section 3, which is that naive OPA tends to
underestimate the scale parameter.

As pointed out by a referee, a natural extension of the above
analysis is to embrace the longitudinal nature of the study and
carry out a longitudinal size and shape analysis for the en-
tire sample of 18 rats. For this extension, one may consider a
longitudinal model in a very similar spirit as the longitudinal
functional model proposed by Greven et al. (2010). This is be-
yond the scope of our current study, and we provide a brief
discussion in Appendix G in the supplementary materials on a

longitudinal model for configurations and its connection with
the longitudinal functional model in Greven et al. (2010).

Example 2 (Brain templates). In this example, we consider
template matching in medical imaging where candidate tem-
plates of brain images are generated by an automatic algorithm.
For each axial MRI brain scan, eight landmarks are estimated
on the corpus callosum according to a graphical template algo-
rithm (Amit 1997; Dryden 2003), and the resulting candidate
templates are subject to estimation error. Because, given one

Day

β̂
1

0 50 100 150

1
1.
5

2

(a) Rat 1

Day

β̂
1

0 50 100 150

1
1.
5

2

(b) Rat 2

Figure 3. Naive estimates (dashed lines) and conditional score
estimates (solid lines for λ = 0.5, dotted lines for λ = 0.9) of the
scale parameter ‖β1‖ at seven time points based on the rat data in
Example 1.



376 Journal of the American Statistical Association, March 2015

111 1 11 1 1111 11 1 11 11111 11 111111

2211
1221
1
1

1

11 11

1 1

111

4

4

3

4 4
4

3

4

33

11 1 1111 1 1 1

1
1

1
1

2

3

2

3

2
2 1

1

1

11112

1

2

11 11 12

2
2

1

2

11 1 11 1 1111 11 1 11 11111 11 111111

22111221
11

111

1

11

1

1

1

1

4

4

3

4 44

3

4

33

11 1 1111 1 1 11

1
1
1

2

3

2

3

2

2
2

1

2

12222

1

2

11 12 12

2
2

1

2

1 1 11 1

11

1111 11 1 11 11111 11 1111

12
11
1221
1
1

111 111
1

1
11

3 43

4

4

4

3

4

33

11 1 1111 1 1 1

11

11

2

2

2

2

2
2 2

1

2

22222

1

2

1

2

12 2

2

2

2

1

2

1 11 1111

1 1

1

1 1
1

1

1
1 1

1 11 1 11

1

1 1

222
21
2

2
11

1

111 1
1 1

1 1
1

1

4

4
4

4

4

4

4

4

44

1 1 1 1

1

1

1

11 11

1

1

1

2

3

2

3

22

11

1

11111
11

1 11 11 1

2

2

1

2

11 1 1111 11 1 11 11111 11 111111

22
111221
1
1

11
1 11

1

1
111

3

4

3

4 4
4

3

4

33

11 1 1111 1 1 1

1
1

1
1

2

3

2

2

2

2 11

1

11111

1

1

1 11 11 1

2

2

1

2

1 11

1

1111 11 1 11 11111 11 1111

1211
1221
1
1

111 111
1

111
3

43

4

4

4

3

4

33

11 1 1111 1 1 1

11

11

2

2

2

2

2
2

2
2

2

22222

2

2

1212 2

2

2
2

1

2

1 1111 11 1 11 11111 11 111111

22111221
11

111 11
11
1

1
1

3

4

3

4
4

4

3

4

3
3

11 1 1111 1 1 1

1
1

1
1

2

3

2

2

2
2 2

1 1

12122

1

2

11 12 12

2
2

1

2

1111 11 1 11 11111 11 111111

22111221
1
1

111 11

1

1
1

1

1

3

4

3

4
4

4

3

4

33

11 1 1111 1 1 1

1
1

1
1

2

2

2

2

2
2

1
1

1

11112

1

1

11 11 12

2
2

1

2

1

1
1

1

1

1
1

11

1

1 1

1 1 11

1

1

1

1 1

222
21
2

2
11

1

111 11
1

1 1
1

1

4

4

4

4
4

4

4

4

4
4

1

1 1 1

1

1

1

11 11

1

1

1

2

3

2

3

2

2 11

1

11111
11

1 11 11 1

2
2

1

2

1
1 1

1

1 1
1

1
1

1

111 1111

1

1

1

2

2

2
21
2

2
11

1

111 1
1

1
1 1

1

1

4 4

4
4

4

4

4

4

44

1

1 1 1

1

1

1

1 1

1

1

1

1

1

2

3

2

3

22

11

1

1111111

1 11 11 1

2

2

1

2

11 11111 11 111 21 12 111

2
2
221
22
1
1
1

1 1

1 11

1 1

1

1

1

2

4

2

4

4

4

2

4

2

2

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2
1 2

22222
1

2

1212 1

2

2
2

1

2

11111 11 11 2 121 12 111

2
2
221
22
1
2
1

1

11 11

1 1

1
11

2

4

2

4

4

4

2

4

2

2

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2
1 2

22222

1

2

1

2

1

2

12

2

2

1

2

1111 11 1 2 22 21 2 2111

22221221
21

111

1

1

1

1 1

1

1
2

5

2

5 5

5

2

5

22

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2
1 2

22222

2

2

2

2

2

2

2 2

2
2

2

2

1111 11 2 22 21 2 2111

22221221
11

11

1 1

1

1 1

1

1

1
2

5

2

5
5

5

2

5

2

2

11 1 1111 1 1 11 1

11
2

2

2

2

2
2

2
2 2

22222
2

2

22 22 2

2
2
2

2

2

1111 1 2

2

2

2

1 2 2111

222212
2
1
11

111 11
11

1
1

12

4

2

5

4

5

2

5

2

2

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2

1 2
22222

2

2

2

2

2

2

2

2
2
2

2

2

111 1 2

2

2

2

1 2 2111

2
2
221
22
1
1
1

111 11
11

1
112

4

2

4
4

5

2

4

22

11 1 1111 1 1 1

11

112

2

2

2

2

2

2

2
2
22222

2

2

2

2

2

2

2

22

2

2

2

11 1 2

2

2

2

1 2 2111

222212
2
1
11

111 11
11

1
112

4

2

4

4

5

2

4

2

2

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2

1 2
22222

2

2

2

2

2

2

2

22
2

2

2

1 1 2

2

2

2

1 2

2

12 2

222
21

2
211
1

111 1
1

11
1

1

12

5

2

5
5

5

2

5

2
2

11 1 1111 1 1 1

11

112

2

2

2

2

2

2

2 2
22222

2

2

2

2

2

2

2

22
2

2

2

1 2

2

2

2

1 2

2

12 1

2
2
221
22
1
1
1

11
1 11

11

1

11
2

5

2

5
4

5

2

5

22

11 1 1111 1 1 1

11

112

2

2

2

2

2

2
1 2

22222

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

1 2

2

12 2

22221221
11

111 1
1

11
1

1
1

2

5

2

5 5
5

2

5

22

11 1 1111 1 1 1

11

11
2

2

2

2

2

2

2

2
2
22222

2

2

2

2

2

2

2

2
2
2

2

2

1111 11 1 11

2

2

22222222

1111 11 111 1

4
3

43 3
44
3

44

11 1 1111 1 1 11 1

111

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

111111 11

22222
22
222

1111 11 111 1

4

3

43 34

4

3
44

11 1 1111 1 1 11 1

11

1

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

111111 1

2222222222

1111 11 111 1

4
3

4

3 3

34
3

44

11 1 1111 1 1 11

1
111

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

111111

22222
22
2
2
2

1111 11 111 1

4

3

43 33
4

3
44

111 11111 1 11 1

11
1

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

1111 1

22222
22
121

1111 11 111 1

4 3

4

4

4

4

4

4

4
4

11 1 1111 11 11 1

11
1

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

1111

2222222222

1111 11 111 1

4
3

43
3

44
3

4

4

11 1 1111 1 1 11 1 1 1

1

3

2

3

12

1 11 11 1 1111111111

2

2

1

2

111

22222
22
222

1111 11 111 1

4

3

43

3

4

4

3

44

111 1111 1 1 11 1 1 1

1

3

2

3

12

1 11 11 1 1111111111

2

2

1

2

1 1

22222
22121

1111 11 111 1

4 4
4

4
4

4

4
4

4
3

11 1 1111 1 1 11 1

111

3

2

3

1

2

1 11 11 1 1111111111

2

2

1

2

1

22222
22
222

1111 11 111 1

4

3

4

3

3

3

4

3

44

11 1 1111 1 1 11 1

11
1

3

2

3

1
2

1 11 11 1 1111111111

2

2

1

2

22222
22222

1111 11 111 1

4 4
44 4

4

4
4

44

11 1 1111 1 1 11 1

111

3

2

3

1
2

1 11 11 1 1111111111

2
2

1

2

111111111

22

2
2

2 2
2

2
2

2

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2 2

2 2

2

2

2

2

2
2

2

2

2

2

2 2

2
3

3

2

3

11111111

22

2
2

2 2
2

2 2

2

5

4

5

4

4

4

5

4

5
5 2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2 2

2

2

2

2

2
2

2

2

2

2

2
2

2

3
3

2

3

1111111

21

2 2
2 2

2

2
2

1

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2 2

2 2

2

2

2

2

2
2

2

2

2

2

2
2

2
3
3

2

3

111111

22

2

2
2 2

2

2 2

2

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2
2

2 2

2

2

2

2

2
2

2

2

2

2

2 2

2
3
3

2

3

11111

1
1

1
2

2

2

2

2 2

1

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2

2

2 2

2

2

2

2

22

2

2

2

2

2 2

2
3

3

2

3

1111

22

2 2
2 2

2

2 2

2

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2 2

2

2

2

2

2
2

2

2

2

2

2

2

2

3
3

2

3

1 1 1

22

2

2
2 2

2

2 2

2

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2
2

2

2

2

2

2 2

2
3
3

2

3

1 1

1
1

1

11
1

1

2 1

1

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2

2

2 2

2

2

2

2

22

2

2

2

2

2 2

23

3

2

3

1

2
2

2

2
2 2

2

2 2

2

5

4

5

4

4

4

5

4

5
5 2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

1

2

2 2

2

2

2

2

22

2

2

2

2

2 2

23

3

2

3

1

1

1
1

1 1
1

2 2

1

5

4

5

4

4

4

5

4

5
5

2

2

2

2

22

2

2

2

2

2

2

2

2

2

3

2

3

2

2

2

2 2

2

2

2

2

22

2

2

2

2

2 2

23
3

2

3

1111 11 111

4

3

4 4
3

4
4 4
3

4

11 1 1111 1 1 1

11

11

2

3

2

3

2

2

1 111111111 1

1

1

1

1

1

2

2

1

2

1 111 11 11

4 3

3
4

4

4

3 43
4

11 1 1111 1 1 1

11

11

2

2

2

2

2

2

1 111111111 1

1

1 1

11

2

2

1

2

1 111 11 1

3 4
3

4
4

4

3
43

3

11 1 1111 1 1 1

1

1

11

2

2

2

2

2
2

111 1211 1 11111

1 11

2
2

1

2

1 111 11

4
43 4 4

4

3
433

11 1 1111 1 1 1

11

11

2

3

2

2

2

2

1 1111111111

1

1

1

1

1

2
2

1

2

1 111 1

4

3

4 4

3

44
4

4
4

11 1 1111 1 1 1

11
11

2

3

2

3

2

2

1 11 11 1 111111111 1

2

2

1

2

1 111

4

3

4

4

3

4

4
4

4

4

11 1 1111 1 1 11 1

11

2

3

2

3

2
2

1 11 11 1 1111111111

2

2

1

2

1 11

4
3

4
4

3

4

4
4

4
4

11 1 1111 1 1 1

11
11

2

3

2

3

2

2

1 11 11 1 111111111 1

2

2

1

2

1 1

4
4

4 4
4

4

4
4

4

4

11 1 1111 1 1 1

11
11

2

3

2

3

2

2

1 11 11 1 111111111 1

2
2

1

2

1

4

4

4

4

4

4

4 4
3

4

11 1 1111 1 1 11 1

11

2

3

2

3

2
2

1 11 11 1 1111111111

2
2

1

2

3

3

3 4 3

4
3 4
3

3

11 1 1111 1 1 1

1
1

1
1

2

2

2

2

2

2

1111111111

1
1

1
1 1
1

2

2

1

2

2

1

2

2

2

1

2

1 1

3

3

3

3

3

3

3
3

3

3

3

3

3

3
4

5

4

5

4

4

3

2

3
3

3
33

3

2

3

3

3

3

3

3

3

4

4

34

2

1 11

2

1

2

2
4

44

4

4
4

4

4

4

4

4
4

4
44

6

4

6

4

4

44
444444

44

4

4

4

4

4

5

5
5

4

4

2

2

2

1

2

1

1

3

3

3

3

3

3

3
3

3

3

3

3

3

3

4

5

4

5

4

4

3

2

3

3

3

33

3

2

3

3

3

3

3

3

3

4

4

34

1 1

2

1

22

4

55

5

4
5

4

4

5

4

4
4

5
5

5

6

5

6

5

5

44
4
444

44

4
4

4

5

4

5

4

5

5
5

5

5

1

2

1

2

2
4

44

4

4

4

4

4

4

4

4
4

4
44

6

4

6

4

4

44

44444
4

44

4

5

4

4

4

5

5

5

4

4

2

1

2
2

5

55

5

4
5

5

5

5

5

5
4

5
5

5

6

5

6

5

5

44

4
444

44

4

4

5

5

5

5

5

5

5
5

5

5

2

1 1

4

4

4

4

4

4

4

4

4

4

4
3

4

3

4

5

4

5

4
4

3

3

3
3

3
3

33

3

3

4

4

4

4

4

4

4
4

4
4

22

4

55

5

4
5

4

4

5

4

4
4

5

5

5

6

5

6

5

5

44
4
44
4

4
4

4
4

4

5

4

5

4

5

5
5

5

5

1

4

4

4

4

4

4

4
4

4

4

4
3

4

3

4

5

4

5

44

3

3

3
3

3

3
3
3

3

3

4

4

4

4

4

4

4
4

44

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

5

5

5

45

3

3

3
3

33
33

3

3

4

4

4

4

4

44
4

4
4

1111 11 1111 1

112

2

2

2

22

111111121211 11 12

2

2

1

2

111 1111 11 1 1 1

2

3

2

3

22

1 11 11 1 1111111111

2

2

1

2

11 1 11111 1 1 1

2

3

2

3

22

1 11 11 1 1111111111

2
2

1

2

111 1111 1 1 1

2

3

2

3

22

1 11 11 1 1111111111

2

2

1

2

11 1 111 1

112

2

2

2

2
2

21 212222 121212 12

2
2

1

2

11 1 11 1 1 1

2

3

2

3

22

1 11 11 1 1111111111

2

2

1

2

11 1

11

112

2

2

2

2
2

111111121 1 1

1

1 11 1

2

2

1

2

1 11 1

11

2

3

2

3

22

1 11 11 1 1111111111

2
2

1

2

11 1 1 1

2

3

2

3

22

1 11 11 1 1111111111

2

2

1

2

1 1

112

2

2

2

2
2

21 212222 121212 12

2
2

1

2

1 1 1

2

3

2

3

2

2 1
1 1

11
11
1
1

1

1 11 11 1

2
2

1

2

1 1

2

3

2

3

2

2 1
1 111

11
1
1

1

1 11 1

1

1

2
2

1

2

1

2

3
2
3

2

2
11
1
11

1
1
1

1
1

1 11 1

1

1

2
2

1

2

2

3

2

3

2

2 1
1 111

1
1

1

1
1

1 1

1

1

1
1

2
2

1

2

3

2

3

1

2

11
1
1
1
1

1
1
1

1

1111 11

2
2

1

2

4

1

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

4

1

1

22 2
2
22
222
2

1
1

1
1

1
1

2

2

1

2

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

2

11
1
1
1
1

1

11

1

11
11

1
1

22

1

2

22
2
2
22222
2

11

11

21

2

2

1

2

111111111

1
1
1

1
1

1

2
2

1

2

11111111

1
1
1

1
1

1

2
2

1

2

1 1111111

1

1

1

1 1

2

2

1

2

111111

1
1
1

1
1

1

2
2

1

2

11111

1
1
1

1
1

1

2
2

1

2

1111

1
1
1

1
1

1

2
2

1

2

111

1
1
1

1
11

2

2

1

2

1 1

1
1
1

1
11

2

2

1

2

1

1
1

1
1

1

1

2

2

1

2

1
1
1

1
11

2

2

1

2

1 11 11

2
2

1

2

1 11 1

2

2

1

2

1 11

2
2

1

2

1 1

2
2

1

2

1

2
2

1

2

2
2

1

2

1

2

1

2

1

2

β̂
1
, W

/
β̂
1

β̂1

0.6 0.8

0
.9
4

0
.9
6

0
.9
8

1

1 1.2 1.4 1.6 1.8

Figure 4. Ratio of ‖β̂1,W‖ over ‖β̂1‖ versus ‖β̂1‖ based on 100 brain
templates, resulting in 4950 pairs, in Example 2. Estimated standard
errors of ‖β̂1‖ (s.e.) associated with different numerical symbols are:
s.e.∈ (0, 0.1) for “1,” s.e.∈ [0.1, 0.5) for “2,” s.e.∈ [0.5, 1) for “3,”
s.e.∈ [1, 2) for “4,” s.e.∈ [2, 3) for “5,” and s.e.∈ [3, 4.21) for “6.”

slice of the brain scan, these candidate templates can be viewed
as error-contaminated measures of the same underlying structure
in the corpus callosum, the true scale parameter when matching
one template onto the other, while appropriately accounting for
measurement error, is equal to one. Using all available 604 can-
didate templates corresponding to the same slice of brain scan,
we obtain σ̂ 2

u ≈ 0.002 and σ̂ 2
x + σ̂ 2

u ≈ 0.015, yielding an esti-
mated reliability ratio as 0.860. Then we choose a particular pair
of templates as Y and W. Matching W onto Y via naive OPA
yields the estimated scale as 0.951 (0.061) and the estimated ro-
tation as 2.116◦ (2.956), with sandwich standard error estimates
in parentheses, and the counterpart conditional score estimates
are 0.999 (0.062) and 2.116◦ (2.947). With such a small number
of landmarks (K = 8), high variability in these estimates is in-
evitable. Although we cannot conclude statistically significant
discrepancy between the naive scale estimate and conditional
score estimate (with the high variability in estimates), we ob-
serve across all 182,106 pairs (from 604 templates with Y and
W assigned at random for each pair) that the former is never
larger than the latter. Figure 4 depicts ‖β̂1,W‖/‖β̂1‖ versus ‖β̂1‖
when matching 4950 pairs resulting from the first 100 templates.

Example 3 (Face data). Evison et al. (2010) analyzed three-
dimensional facial images of healthy volunteers, which were
collected using a Geometrix FaceVision

R©
FV802 Biometric

Camera (ALIVE Tech, Cumming, GA). To demonstrate the
conditional score method for three-dimensional shape data in
comparison with naive OPA, we implement these two methods
using data from one volunteer, whose facial configuration con-
sisting of 61 landmarks was measured twice by each of the two
operators in the study.

More specifically, denote by W1,w and W2,w the two repli-
cate measures for this volunteer’s face collected by one operator,
and by Y a facial configuration of the same volunteer measured
by the other operator. Using the duplicate measures, W1,w and
W2,w, and applying the method related in Section 4.3, we obtain
σ̂ 2

u ≈ 0.007. This estimate of the measurement error variance, in
contrast to the estimate of σ 2

x + σ 2
u (≈ 5.216), results in the esti-

mated reliability ratio equal to 0.999, suggesting minimal error
contamination in the observed facial images. This is also implied
by Evison et al. (2010), who stated that the three-dimensional
coordinates of landmarks were collected with high precision us-
ing a software tool. The estimated scale resulting from matching
W1,w onto Y using naive OPA and the conditional score esti-
mate are 0.988 (0.006) and 0.990 (0.006), respectively, with the
corresponding estimated standard errors in parentheses. As ex-
pected when measurement error is scarce, these two estimates
are very similar. To simulate a scenario with slightly more error
contamination as expected from CCTV cameras in the field, we
add isotropic measurement error to W1,w to reduce the reliabil-
ity ratio to 0.9, and repeat the two analyses using the further
contaminated configuration. This round of analyses yields the
naive estimate of the scale as 0.845 (0.020) and the conditional
score estimate as 0.920 (0.024), which demonstrates that naive
OPA leads to an attenuated scale estimate.

7. DISCUSSION

We have shown theoretically and empirically that compar-
isons of two error-contaminated configurations via naive OPA
can be misleading, with the adverse effects of measurement
error mostly manifested in the attenuated scale estimation. Be-
sides the severity of error contamination, the interplay of sev-
eral factors that affect the degree of deterioration in inference
from naive OPA is revealed in our bias analyses in Section 3.
One noteworthy finding is that ignoring measurement error does
less harm when the unobserved true configuration consists of
more diffuse landmarks. Comforting as this finding sounds, one
may not know with absolute certainty if the true configuration
has landmarks diffuse enough to counteract measurement error
in one particular application. The proposed conditional score
method that accounts for measurement error and yields consis-
tent inference for all parameters of interest is a valuable addition
to the methodology available for size and shape analyses.

Formulating the measurement error models for shape data
using complex/quaternion random variables allows us to de-
rive the conditional scores in ways that are similar to those
employed in the context of real-value linear measurement er-
ror models. However, although it is assumed in most real-value
regression analyses that (Yl, Xl, Wl) are independent across
l = 1, . . . , K , it is more natural to view (Yl, Xl, Wl) correlated
across l = 1, . . . , K for shape data. This correlation creates
some technical challenges in studying the bias of naive estima-
tors but not in deriving the conditional scores, as knowledge
about such correlation is neither needed nor used in construct-
ing conditional scores. But now that correlation does exist, it is
worth considering next how to construct new unbiased scores
that account for such correlation. By taking into account the cor-
relation among landmarks within a configuration, the new scores



Du, Dryden, and Huang: Size and Shape Analysis of Error-Prone Shape Data 377

can be more efficient than the conditional scores proposed in the
current study.

When more than two shapes are of interest, generalized Pro-
crustes analysis, or GPA, can be used to estimate the mean size
and shape (Dryden and Mardia 1998, sec. 5.3). In the presence
of measurement error, one may fit the conditional score method
into the algorithm of GPA where each error-prone shape is
matched onto the estimated mean shape obtained at each itera-
tion. But this becomes unnecessary if the main goal is to estimate
the mean size and shape of these error-prone configurations,
as ignoring measurement error does not affect the outcome of
(naive) GPA regarding mean shape estimation in terms of con-
sistency. This argument is in line with that (naive) predictions
are not affected by measurement error, except for efficiency, in
real-value linear measurement error models. Regardless, condi-
tional score estimates of the matching parameters can be useful
in the case, say, when an accurately measured rat skull becomes
available and one wishes to predict the size and shape of this
skull at a future time point. Assuming this rat and the rats in
Example 1 in Section 6 come from the same population, then
using the conditional score estimates of the matching parame-
ters obtained there for prediction of this new rat skull is clearly
more appealing than using the estimates from naive OPA.

As suggested by a referee, instead of the additive measure-
ment error in (2), one may view the true configuration X as a
set of realizations of the function, X(d), where d(∈ D) is an
argument of the function representing the true location of a
landmark; then one may view the observed configuration W as
another set of realizations of the same function, X(dW ), where
dW (∈ D) is a noisy version of the target location d. Adopting
this viewpoint, one needs a model that relates dW and d, which
may lead to a model connecting W and X. Either using (2) or this
strategy, with appropriate measurement error models formulated
for error-prone shape data, the large battery of methodologies
in the existing literature on measurement error can be poten-
tially useful hints for solving other problems in shape analyses
in the presence of measurement error. These include the widely
adopted regression calibration and SIMEX (Carroll et al. 2006,
chaps. 4 and 5), and other methods under the Bayesian frame-
work (Carroll et al. 2006, chap. 9). The study reported in this
article opens up this new avenue of research in shape analysis.

SUPPLEMENTARY MATERIALS

The supplement to this article contains Appendices A–G ref-
erenced in Sections 2.2, 3, 4.2, 5.1, and 6.

[Received April 2013. Revised January 2014.]
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