29 research outputs found

    Correlación entre Fragilidad y Pronóstico en Pacientes Mayores de 75 Años Ingresados por Infarto Agudo de Miocardio

    Get PDF
    INTRODUCCIÓN Y OBJETIVOS Los pacientes con Síndrome Coronario Agudo (SCA) son cada vez más añosos y con mayores tasas de comorbilidad. Las escalas pronósticas incluyen la valoración de la edad cronológica sin tener en cuenta la edad biológica. La fragilidad refleja la vulnerabilidad y la disminución de la reserva fisiológica con el paso del tiempo y su impacto en el SCA no ha sido completamente descrito. El estudio que presentamos evalúa la prevalencia de fragilidad y su impacto pronóstico en pacientes ≥ 75 años ingresados por SCA. MÉTODOS Presentamos un estudio prospectivo y multicéntrico que incluyó pacientes ≥75 años ingresados por infarto de miocardio tipo 1 seguidos a 6 meses. La fragilidad fue evaluada mediante el índice SHARE-FI. El objetivo primario fue describir la asociación entre fragilidad y muerte o re-infarto. También se exploró la relación entre fragilidad y sangrado mayor (pérdida ≥3g/dl de hemoglobina o necesidad de transfusión); así como con la tasa de reingresos. RESULTADOS Se incluyeron 234 pacientes. Los pacientes frágiles (94, 40,2%) tenían un perfil de mayor riesgo al ingreso y presentaron a 6 meses mayor número de eventos adversos que los pacientes no frágiles. Tras el análisis multivariado, la fragilidad resultó asociarse significativamente al combinado de mortalidad y re-infarto (RR 2,54; 95% IC 1,12-5,79), al combinado de mortalidad, re-infarto y sangrado mayor (RR 2,14; 95%IC 1,13 - 4,04), y a la probabilidad de reingresar (RR 1,80; 95%IC 1,00-3,22) CONCLUSIONES En torno al 40% de los pacientes de 75 años o mayores ingresados por IAM tipo 1 son frágiles. En ellos, la fragilidad es un factor pronóstico independiente que debería tenerse en cuenta en la valoración clínica inicial

    Fail-aware LIDAR-based odometry for autonomous vehicles

    Get PDF
    Autonomous driving systems are set to become a reality in transport systems and, so, maximum acceptance is being sought among users. Currently, the most advanced architectures require driver intervention when functional system failures or critical sensor operations take place, presenting problems related to driver state, distractions, fatigue, and other factors that prevent safe control. Therefore, this work presents a redundant, accurate, robust, and scalable LiDAR odometry system with fail-aware system features that can allow other systems to perform a safe stop manoeuvre without driver mediation. All odometry systems have drift error, making it difficult to use them for localisation tasks over extended periods. For this reason, the paper presents an accurate LiDAR odometry system with a fail-aware indicator. This indicator estimates a time window in which the system manages the localisation tasks appropriately. The odometry error is minimised by applying a dynamic 6-DoF model and fusing measures based on the Iterative Closest Points (ICP), environment feature extraction, and Singular Value Decomposition (SVD) methods. The obtained results are promising for two reasons: First, in the KITTI odometry data set, the ranking achieved by the proposed method is twelfth, considering only LiDAR-based methods, where its translation and rotation errors are 1.00% and 0.0041 deg/m, respectively. Second, the encouraging results of the fail-aware indicator demonstrate the safety of the proposed LiDAR odometry system. The results depict that, in order to achieve an accurate odometry system, complex models and measurement fusion techniques must be used to improve its behaviour. Furthermore, if an odometry system is to be used for redundant localisation features, it must integrate a fail-aware indicator for use in a safe manner

    Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial

    Get PDF
    Background: Acute heart failure patients could benefit from heart rate reduction, as myocardial consumption and oxidative stress are related to tachycardia. Ivabradine could have a clinical role attenuating catecholamine-induced tachycardia. The aim of this study was to evaluate hemodynamic effects of ivabradine in a swine model of acute heart failure. Methods: Myocardial infarction was induced by 45 min left anterior descending artery balloon occlusion in 18 anesthetized pigs. An infusion of dobutamine and noradrenaline was maintained aiming to preserve adequate hemodynamic support, accompanied by fluid administration to obtain a pulmonary wedged pressure ≥ 18 mmHg. After reperfusion, rhythm and hemodynamic stabilization, the animals were randomized to 0.3 mg/kg ivabradine intravenously (n = 9) or placebo (n = 9). Hemodynamic parameters were observed over a 60 min period. Results: Ivabradine was associated with a significant reduction in heart rate (88.4 ± 12.0 bpm vs. 122.7 ± 17.3 bpm after 15 min of ivabradine/placebo infusion, p < 0.01) and an increase in stroke volume (68.8 ± 13.7 mL vs. 52.4 ± 11.5 mL after 15 min, p = 0.01). There were no significant differences in systemic or pulmonary arterial pressure, or significant changes in pulmonary capillary pressure. However, after 15 min, cardiac output was significantly reduced with ivabradine (–5.2% vs. +15.0% variation in ivabradine/placebo group, p = 0.03), and central venous pressure increased (+4.2% vs. –19.7% variation, p < 0.01). Conclusions: Ivabradine reduces heart rate and increases stroke volume without modifying systemic or left filling pressures in a swine model of acute heart failure. However, an excessive heart rate reduction could lead to a decrease in cardiac output and an increase in right filling pressures. Future studies with specific heart rate targets are needed

    Ivabradine in acute heart failure: Effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial.

    Get PDF
    Background: Acute heart failure patients could benefit from heart rate reduction, as myocardial consumption and oxidative stress are related to tachycardia. Ivabradine could have a clinical role attenuating catecholamine-induced tachycardia. The aim of this study was to evaluate hemodynamic effects of ivabradine in a swine model of acute heart failure. Methods: Myocardial infarction was induced by 45 min left anterior descending artery balloon occlusion in 18 anesthetized pigs. An infusion of dobutamine and noradrenaline was maintained aiming to preserve adequate hemodynamic support, accompanied by fluid administration to obtain a pulmonary wedged pressure ≥ 18 mmHg. After reperfusion, rhythm and hemodynamic stabilization, the animals were randomized to 0.3 mg/kg ivabradine intravenously (n = 9) or placebo (n = 9). Hemodynamic parameters were observed over a 60 min period. Results: Ivabradine was associated with a significant reduction in heart rate (88.4 ± 12.0 bpm vs. 122.7 ± 17.3 bpm after 15 min of ivabradine/placebo infusion, p < 0.01) and an increase in stroke volume (68.8 ± 13.7 mL vs. 52.4 ± 11.5 mL after 15 min, p = 0.01). There were no significant differences in systemic or pulmonary arterial pressure, or significant changes in pulmonary capillary pressure. However, after 15 min, cardiac output was significantly reduced with ivabradine (–5.2% vs. +15.0% variation in ivabradine/placebo group, p = 0.03), and central venous pressure increased (+4.2% vs. – 19.7% variation, p < 0.01). Conclusions: Ivabradine reduces heart rate and increases stroke volume without modifying systemic or left filling pressures in a swine model of acute heart failure. However, an excessive heart rate reduction could lead to a decrease in cardiac output and an increase in right filling pressures. Future studies with specific heart rate targets are needed.pre-print2533 K

    Optimal surgical timing after post-infarction ventricular septal rupture

    Full text link
    Background: Ventricular septal rupture (VSR) following acute myocardial infarction (AMI) is a dan-gerous condition. Surgical VSR closure is the definitive therapy, but there is controversy regarding the surgical timing and the bridging therapy between diagnosis and intervention. The objective of this study is to analyze the ideal time of surgical repair and to establish the contribution of mechanical circulatory support (MCS) devices on the prognosis. Methods: We designed an observational, retrospective, multicenter study, selecting all consecutive patients with post-AMI VSR between January 1, 2008 and December 31, 2018, with non-exclusion criteria. The main objective of this study was to analyze the optimal timing for surgical repair of post-AMI VSR. Second- ary endpoints were to determine which factors could influence mortality in the patients of the surgical group. Results: A total of 141 patients were included. We identified lower mortality rates with an odds ratio of 0.3 (0.1 & ndash;0.9) in patients operated on from day 4 compared with the surgical mortality in the first 24 hours after VSR diagnosis. The use of MCS was more frequent in patients treated with surgery, par- ticularly for intra-aortic balloon pump (IABP; 79.6% vs. 37.8%, p < 0.001), but also for veno-arterial extracorporeal membrane oxygenation (VA-ECMO; 18.2% vs. 6.4%, p = 0.134). Total mortality was 91.5% for conservative management and 52.3% with surgical repair (p < 0.001). Conclusions: In our study, we observed that the lowest mortality rates in patients with surgical repair of post-AMI VSR were observed in patients operated on from day 4 after diagnosis of VSR, compared to earlier interventions. (Cardiol J 2022; 29, 5: 773 & ndash;781

    Optimal surgical timing after post-infarction ventricular septal rupture

    Get PDF
    Background: Ventricular septal rupture (VSR) following acute myocardial infarction (AMI) is a dangerous condition. Surgical VSR closure is the definitive therapy, but there is controversy regarding the surgical timing and the bridging therapy between diagnosis and intervention. The objective of this study is to analyze the ideal time of surgical repair and to establish the contribution of mechanical circulatory support (MCS) devices on the prognosis. Methods: We designed an observational, retrospective, multicenter study, selecting all consecutive patients with post-AMI VSR between January 1, 2008 and December 31, 2018, with non-exclusion criteria. The main objective of this study was to analyze the optimal timing for surgical repair of post-AMI VSR. Secondary endpoints were to determine which factors could influence mortality in the patients of the surgical group. Results: A total of 141 patients were included. We identified lower mortality rates with an odds ratio of 0.3 (0.1–0.9) in patients operated on from day 4 compared with the surgical mortality in the first 24 hours after VSR diagnosis. The use of MCS was more frequent in patients treated with surgery, particularly for intra-aortic balloon pump (IABP; 79.6% vs. 37.8%, p &lt; 0.001), but also for veno-arterial extracorporeal membrane oxygenation (VA-ECMO; 18.2% vs. 6.4%, p = 0.134). Total mortality was 91.5% for conservative management and 52.3% with surgical repair (p &lt; 0.001). Conclusions: In our study, we observed that the lowest mortality rates in patients with surgical repair of post-AMI VSR were observed in patients operated on from day 4 after diagnosis of VSR, compared to earlier interventions

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life
    corecore