20 research outputs found

    Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction

    Get PDF
    Intrauterine growth restriction (IUGR) is a fetal condition that affects up to 10% of all pregnancies and is associated with cardiovascular structural and functional remodelling that persists postnatally. Some studies have reported an increase in myocardial coronary blood flow in severe IUGR fetuses which has been directly associated to the dilatation of the coronary arteries. However, a direct measurement of the coronaries’ lumen diameter in IUGR has not been reported before. The aim of this paper is to perform, for the first time, a quantitative analysis of the effects of IUGR in cardiac geometry and coronary vessel size in a wellknown rabbit model of IUGR using synchrotron-based X-ray Phase Contrast Tomography Imaging (X-PCI). Eight rabbit fetal hearts were imaged non-destructively with X-PCI. 3D reconstructions of the coronary arterial tree were obtained after semi-automatic image segmentation. Different morphometric features including vessel lumen diameter of the three main coronaries were automatically quantified. IUGR fetuses had more globular hearts and dilated coronary arteries as compared to controls. We have quantitatively shown that IUGR leads to structural coronary vascular tree remodelling and enlargement as an adaptation mechanism in response to an adverse environment of restricted oxygen and nutrients and increased perfusion pressure

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    [Background]: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. [Methods]: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. [Results]: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (−11.96 ± 3.16%; −15.58 ± 5.32%; −14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (−17.22 ± 3.46%; p < 0.005 and −29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (−44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (−39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. [Conclusions]: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency.This work was supported by Fondo de Investigación Sanitaria [FIS PI12/01199, PI15/00817, PI15/00903 and PI15/00130], CIBERER (an initiative of ISCIII) and InterCIBER [PIE1400061] granted by Instituto de Salud Carlos III and cofinanced by the Fondo Europeo de Desarrollo Regional de la Unión Europea “Una manera de hacer Europa”; Suports a Grups de Recerca [SGR893/2017] and CERCA Programme from the Generalitat de Catalunya; CONACyT; Fundació La Marató de TV3 [87/C/2015]; Fundació Cellex; and “la Caixa” Foundation

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation. The case of the Gulf of Vera (Western Mediterranean)

    No full text
    We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The indentation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plain

    A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities

    Get PDF
    Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young’s moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.This study was partly supported by grants from Ministerio de Economia y Competitividad (ref. SAF2012-37196, TIN2014-52923-R); the Instituto de Salud Carlos III (ref. PI11/01709, PI14/00226) integrado en el Plan Nacional de I+D+I y cofinanciado por el ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) “Otra manera de hacer Europa”; the EU FP7 for research, technological development and demonstration under grant agreement VP2HF (n° 611823); The Cerebra Foundation for the Brain Injured Child (Carmarthen, Wales, UK); Obra Social “la Caixa” (Barcelona, Spain); Fundació Mutua Madrileña; Fundació Agrupació Mutua (Spain) and AGAUR 2014 SGR grant n° 928 (Barcelona, Spain). P.G.C. was supported by the Programa de Ayudas Predoctorales de Formación en investigación en Salud (FI12/00362) from the Instituto Carlos III, Spain. P.G.C wants to acknowledge to Boehringer Ingelhiem Fonds for the travel grant to do her research stay at LaBS group in Politecnico di Milano

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    No full text
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling
    corecore