1,194 research outputs found

    Structure identification in complete rule-based fuzzy systems

    Full text link

    Evolution along the sequence of S0 Hubble types induced by dry minor mergers. II - Bulge-disk coupling in the photometric relations through merger-induced internal secular evolution

    Get PDF
    Galaxy mergers are considered as questionable mechanisms for the evolution of lenticular galaxies (S0's), on the basis that even minor ones induce structural changes that are difficult to reconcile with the strong bulge-disk coupling observed in the photometric scaling relations of S0's. We check if the evolution induced onto S0's by dry intermediate and minor mergers can reproduce their photometric scaling relations, analysing the bulge-disk decompositions of the merger simulations presented in Eliche-Moral et al. (2012). The mergers induce an evolution in the photometric planes compatible with the data of S0's, even in those ones indicating a strong bulge-disk coupling. The mergers drive the formation of the observed photometric relation in some cases, whereas they induce a slight dispersion compatible with data in others. Therefore, this evolutionary mechanism tends to preserve these scaling relations. In those photometric planes where the morphological types segregate, the mergers always induce evolution towards the region populated by S0's. The structural coupling of the bulge and the disk is preserved or reinforced because the mergers trigger internal secular processes in the primary disk that induce significant bulge growth, even although these models do not induce bars. Intermediate and minor mergers can thus be considered as plausible mechanisms for the evolution of S0's attending to their photometric scaling relations, as they can preserve and even strengthen any pre-existing structural bulge-disk coupling, triggering significant internal secular evolution (even in the absence of bars or dissipational effects). This means that it may be difficult to isolate the effects of pure internal secular evolution from those of the merger-driven one in present-day early-type disks (abridged).Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 8 figures. Definitive version after proofs. Added references and corrected typo

    The Pristine survey II: a sample of bright stars observed with FEROS

    Full text link
    Extremely metal-poor (EMP) stars are old objects formed in the first Gyr of the Universe. They are rare and, to select them, the most successful strategy has been to build on large and low-resolution spectroscopic surveys. The combination of narrow- and broad band photometry provides a powerful and cheaper alternative to select metal-poor stars. The on-going Pristine Survey is adopting this strategy, conducting photometry with the CFHT MegaCam wide field imager and a narrow-band filter centred at 395.2 nm on the CaII-H and -K lines. In this paper we present the results of the spectroscopic follow-up conducted on a sample of 26 stars at the bright end of the magnitude range of the Survey (g<=15), using FEROS at the MPG/ESO 2.2 m telescope. From our chemical investigation on the sample, we conclude that this magnitude range is too bright to use the SDSS gri bands, which are typically saturated. Instead the Pristine photometry can be usefully combined with the APASS gri photometry to provide reliable metallicity estimates.Comment: AN accepte

    Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances

    Full text link
    We present atmospheric parameters and iron abundances derived from high-resolution spectra for three samples of dwarf stars: stars which are known to host close-in giant planets (CGP), stars for which radial velocity data exclude the presence of a close-in giant planetary companion (no-CGP), as well as a random sample of dwarfs with a spectral type and magnitude distribution similar to that of the planetary host stars (control). All stars have been observed with the same instrument and have been analyzed using the same model atmospheres, atomic data and equivalent width modeling program. Abundances have been derived differentially to the Sun, using a solar spectrum obtained with Callisto as the reflector with the same instrumentation. We find that the iron abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are different than that of the control dwarfs, while the combined iron abundances have a distribution which is very similar to that of the control dwarfs. All four samples (CGP, no-CGP, combined, control) have different effective temperature distributions. We show that metal enrichment occurs only for CGP dwarfs with temperatures just below solar and approximately 300 K higher than solar, whereas the abundance difference is insignificant at Teff around 6000 K.Comment: 52 pages (aastex 11pt, preprint style), including 17 figures and 13 tables; accepted for publication in AJ (scheduled for the October 2003 issue

    A High-Eccentricity Low-Mass Companion to HD 89744

    Full text link
    HD 89744 is an F7 V star with mass 1.4 M, effective temperature 6166 K, age 2.0 Gy and metallicity [Fe/H]= 0.18. The radial velocity of the star has been monitored with the AFOE spectrograph at the Whipple Observatory since 1996, and evidence has been found for a low mass companion. The data were complemented by additional data from the Hamilton spectrograph at Lick Observatory during the companion's periastron passage in fall 1999. As a result, we have determined the star's orbital wobble to have period P = 256 d, orbital amplitude K = 257 m/s, and eccentricity e = 0.7. From the stellar mass we infer that the companion has minimum mass m2 sin i = 7.2 MJup in an orbit with semi-major axis a2 = 0.88 AU. The eccentricity of the orbit, among the highest known for extra-solar planets, continues the trend that extra-solar planets with semi-major axes greater than about 0.15 AU tend to have much higher eccentricities than are found in our solar system. The high metallicity of the parent star reinforces the trend that parent stars of extra-solar planets tend to have high metallicityComment: AASTEX-LateX v5.0, 7 pages w/ 3 figures, to be published in ApJ

    Carbon and Oxygen in Nearby Stars: Keys to Protoplanetary Disk Chemistry

    Full text link
    We present carbon and oxygen abundances for 941 FGK stars-the largest such catalog to date. We find that planet-bearing systems are enriched in these elements. We self-consistently measure C/O, which is thought to play a key role in planet formation. We identify 46 stars with C/O \geq 1.00 as potential hosts of carbon-dominated exoplanets. We measure a downward trend in [O/Fe] versus [Fe/H] and find distinct trends in the thin and thick disks, supporting the work of Bensby et al. Finally, we measure sub-solar C/O = 0.40+0.11 - 0.07, for WASP-12, a surprising result as this star is host to a transiting hot Jupiter whose dayside atmosphere was recently reported to have C/O \geq 1 by Madhusudhan et al. Our measurements are based on 15,000 high signal-to-noise spectra taken with the Keck 1 telescope as part of the California Planet Search. We derive abundances from the [O I] and C I absorption lines at {\lambda} = 6300 and 6587 {\AA} using the SME spectral synthesizer.Comment: 108 pages (including appendix), 16 figures, 6 table

    An Eccentric Hot Jupiter Orbiting the Subgiant HD 185269

    Get PDF
    We report the detection of a Jupiter-mass planet in a 6.838 day orbit around the 1.28 solar mass subgiant HD 185269. The eccentricity of HD 185269b (e = 0.30) is unusually large compared to other planets within 0.1 AU of their stars. Photometric observations demonstrate that the star is constant to +/-0.0001 mag on the radial velocity period, strengthening our interpretation of a planetary companion. This planet was detected as part of our radial velocity survey of evolved stars located on the subgiant branch of the H-R diagram--also known as the Hertzsprung Gap. These stars, which have masses between 1.2 and 2.5 solar masses, play an important role in the investigation of the frequency of extrasolar planets as a function of stellar mass.Comment: 18 pages, 4 figures, 3 tables, ApJ in press (scheduled for Dec 2006, v652n2

    Memory-based Model Predictive Control for Parameter Detuning in Multiphase Electric Machines

    Get PDF
    Model predictive control (MPC) is a popular control technique to regulate multiphase electric drives (ED). Despite the well-known advantages of MPC, it is sensitive to parameter detuning and lacks the capability to eliminate steady-state errors. The appearance of an offset between the reference and measured currents can significantly jeopardize the performance of the electric drive. This work suggests the use of a memory-based model predictive control (MB-MPC) that activates a compensation term when the parameter mismatch is detected. The suggested MB-MPC is universal for any multiphase machine if spatial harmonics are neglected since the proposed method does not consider any of the secondary x-y planes. Experimental results in two different rigs with six- and nine-phase induction motors prove this universality as well as its capability to eliminate current and speed offsets

    A Planet at 5 AU Around 55 Cancri

    Get PDF
    We report precise Doppler shift measurements of 55 Cancri (G8V) obtained from 1989 to 2002 at Lick Observatory. The velocities reveal evidence for an outer planetary companion to 55 Cancri orbiting at 5.5 AU. The velocities also confirm a second, inner planet at 0.11 AU. The outer planet is the first extrasolar planet found that orbits near or beyond the orbit of Jupiter. It was drawn from a sample of ~50 stars observed with sufficient duration and quality to detect a giant planet at 5 AU, implying that such planets are not rare. The properties of this jupiter analog may be compared directly to those of the Jovian planets in our Solar System. Its eccentricity is modest, e=0.16, compared with e=0.05 for both Jupiter and Saturn. Its mass is at least 4.0 jupiter masses (M sin i). The two planets do not perturb each other significantly. Moreover, a third planet of sub-Jupiter mass could easily survive in between these two known planets. Indeed a third periodicity remains in the velocity measurements with P = 44.3 d and a semi-amplitude of 13 m/s. This periodicity is caused either by a third planet at a=0.24 AU or by inhomogeneities on the stellar surface that rotates with period 42 d. The planet interpretation is more likely, as the stellar surface is quiet, exhibiting log(R'_{HK}) = -5.0 and brightness variations less than 1 millimag, and any hypothetical surface inhomogeneity would have to persist in longitude for 14 yr. Even with all three planets, an additional planet of terrestrial--mass could orbit stably at ~1 AU. The star 55 Cancri is apparently a normal, middle-aged main sequence star with a mass of 0.95 solar masses, rich in heavy elements ([Fe/H] = +0.27). This high metallicity raises the issue of the relationship between its age, rotation, and chromosphere.Comment: 47 pages, 4 tables, 12 figures, uses AASTE
    • …
    corecore