Evolution along the sequence of S0 Hubble types induced by dry minor
mergers. II - Bulge-disk coupling in the photometric relations through
merger-induced internal secular evolution
Galaxy mergers are considered as questionable mechanisms for the evolution of
lenticular galaxies (S0's), on the basis that even minor ones induce structural
changes that are difficult to reconcile with the strong bulge-disk coupling
observed in the photometric scaling relations of S0's. We check if the
evolution induced onto S0's by dry intermediate and minor mergers can reproduce
their photometric scaling relations, analysing the bulge-disk decompositions of
the merger simulations presented in Eliche-Moral et al. (2012). The mergers
induce an evolution in the photometric planes compatible with the data of S0's,
even in those ones indicating a strong bulge-disk coupling. The mergers drive
the formation of the observed photometric relation in some cases, whereas they
induce a slight dispersion compatible with data in others. Therefore, this
evolutionary mechanism tends to preserve these scaling relations. In those
photometric planes where the morphological types segregate, the mergers always
induce evolution towards the region populated by S0's. The structural coupling
of the bulge and the disk is preserved or reinforced because the mergers
trigger internal secular processes in the primary disk that induce significant
bulge growth, even although these models do not induce bars. Intermediate and
minor mergers can thus be considered as plausible mechanisms for the evolution
of S0's attending to their photometric scaling relations, as they can preserve
and even strengthen any pre-existing structural bulge-disk coupling, triggering
significant internal secular evolution (even in the absence of bars or
dissipational effects). This means that it may be difficult to isolate the
effects of pure internal secular evolution from those of the merger-driven one
in present-day early-type disks (abridged).Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 8
figures. Definitive version after proofs. Added references and corrected
typo