682 research outputs found
Topographical Organization of the Pedunculopontine Nucleus
Neurons in the pedunculopontine nucleus (PPN) exhibit a wide heterogeneity in terms of their neurochemical nature, their discharge properties, and their connectivity. Such characteristics are reflected in their functional properties and the behaviors in which they are involved, ranging from motor to cognitive functions, and the regulation of brain states. A clue to understand this functional versatility arises from the internal organization of the PPN. Thus, two main areas of the PPN have been described, the rostral and the caudal, which display remarkable differences in terms of the distribution of neurons with similar phenotype and the projections that originate from them. Here we review these differences with the premise that in order to understand the function of the PPN it is necessary to understand its intricate connectivity. We support the case that the PPN should not be considered as a homogeneous structure and conclude that the differences between rostral and caudal PPN, along with their intrinsic connectivity, may underlie the basis of its complexity
Noise-tolerant Modular Neural Network System for Classifying ECG Signal
Millions of electrocardiograms (ECG) are interpreted every year, requiring specialized training for accurate interpretation. Because automated and accurate classification ECG signals will improve early diagnosis of heart condition, several neural network (NN) approaches have been proposed for classifying ECG signals. Current strategies for a critical step, the preprocessing for noise removal, are still unsatisfactory. We propose a modular NN approach based on artificial noise injection, to improve the generalization capability of the resulting model. The NN classifier initially performed a fairly accurate recognition of four types of cardiac anomalies in simulated ECG signals with minor, moderate, severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively. Ultimately we discriminated normal and abnormal heartbeat patterns for single lead of raw ECG signals, obtained 95.7% of overall accuracy and 99.5% of Precision. Therefore, the propose approach is a useful tool for the detection and diagnosis of cardiac abnormalities
Solar analogs with and without planets: T trends and galactic evolution
We explore a sample of 148 solar-like stars to search for a possible
correlation between the slopes of the abundance trends versus condensation
temperature (known as the Tc slope) both with stellar parameters and Galactic
orbital parameters in order to understand the nature of the peculiar chemical
signatures of these stars and the possible connection with planet formation. We
find that the Tc slope correlates at a significant level with the stellar age
and the stellar surface gravity. We also find tentative evidence that the Tc
slope correlates with the mean galactocentric distance of the stars (Rmean),
suggesting that stars that originated in the inner Galaxy have fewer refractory
elements relative to the volatile ones. We found that the chemical
peculiarities (small refractory-to-volatile ratio) of planet-hosting stars is
probably a reflection of their older age and their inner Galaxy origin. We
conclude that the stellar age and probably Galactic birth place are key to
establish the abundances of some specific elements.Comment: Proceedings of the GREAT-ITN conference: The Milky Way Unravelled by
Gaia. Will be published in the "EAS Publications Series
Exploring the alpha-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples
Recent studies showed that at low metallicities Doppler-detected
planet-hosting stars have preferably high alpha-content and belong to the thick
disk. We used the reconnaissance spectra of 87 Kepler planet candidates and
data available from the HARPS planet search survey to explore this phenomena.
Using the traditional spectroscopic abundance analysis methods we derived Ti,
Ca, and Cr abundances for the Kepler stars. In the metallicity region -0.65 <
[Fe/H] < -0.3 dex the fraction of Ti-enhanced thick-disk HARPS planet harboring
stars is 12.3 +/- 4.1 % and for their thin-disk counterparts this fraction is
2.2 +/- 1.3 %. The binomial statistics gives a probability of 0.008 that this
could have occurred by chance. Combining the two samples (HARPS + Kepler)
reinforces the significance of this result (P ~ 99.97 %). Since most of these
stars are harboring small-mass/size planets we can assume that, although
terrestrial planets can be found at low-iron regime, they are mostly enhanced
by alpha-elements. This implies that early formation of rocky planets could get
started in the Galactic thick disk, where the chemical conditions for their
formation were more favorable.Comment: 5 pages, 3 figure
Abundance trend with condensation temperature for stars with different Galactic birth places
During the past decade, several studies reported a correlation between
chemical abundances of stars and condensation temperature (also known as Tc
trend). However, the real astrophysical nature of this correlation is still
debated. The main goal of this work is to explore the possible dependence of
the Tc trend on stellar Galactocentric distances, Rmean. We used high-quality
spectra of about 40 stars observed with the HARPS and UVES spectrographs to
derive precise stellar parameters, chemical abundances, and stellar ages. A
differential line-by-line analysis was applied to achieve the highest possible
precision in the chemical abundances. We confirm previous results that [X/Fe]
abundance ratios depend on stellar age and that for a given age, some elements
also show a dependence on Rmean. When using the whole sample of stars, we
observe a weak hint that the Tc trend depends on Rmean. The observed dependence
is very complex and disappears when only stars with similar ages are
considered. To conclude on the possible dependence of the Tc trend on the
formation place of stars, a larger sample of stars with very similar
atmospheric parameters and stellar ages observed at different Galactocentric
distances is neededComment: Accepted by A&
Overabundance of alpha-elements in exoplanet host stars
We present the results for a chemical abundance analysis between
planet-hosting and stars without planets for 12 refractory elements for a total
of 1111 nearby FGK dwarf stars observed within the context of the HARPS GTO
programs. Of these stars, 109 are known to harbour high-mass planetary
companions and 26 stars are hosting exclusively Neptunians and super-Earths. We
found that the [X/Fe] ratios for Mg, Al, Si, Sc, and Ti both for giant and
low-mass planet hosts are systematically higher than those of comparison stars
at low metallicities ([Fe/H] < from -0.2 to 0.1 dex depending on the element).
The most evident discrepancy between planet-hosting and stars without planets
is observed for Mg. Our data suggest that the planet incidence is greater among
the thick disk population than among the thin disk for mettallicities bellow
-0.3 dex. After examining the [alpha/Fe] trends of the planet host and non-host
samples we conclude that a certain chemical composition, and not the Galactic
birth place of the stars, is the determinating factor for that. The inspection
of the Galactic orbital parameters and kinematics of the planet-hosting stars
shows that Neptunian hosts tend to belong to the "thicker" disk compared to
their high-mass planet-hosting counterparts.We also found that Neptunian hosts
follow the distribution of high-alpha stars in the UW vs V velocities space,
but they are more enhanced in Mg than high-alpha stars without planetary
companions. Our results indicate that some metals other than iron may also have
an important contribution to planet formation if the amount of iron is low.
These results may provide strong constraints for the models of planet
formation, especially for planets with low mass.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in Astronomy
& Astrophysic
Searching for the signatures of terrestial planets in solar analogs
We present a fully differential chemical abundance analysis using very
high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on
average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are
planet hosts and 71 are stars without detected planets. The whole sample of
solar analogs provide very accurate Galactic chemical evolution trends in the
metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show
similar mean abundance ratios. We have also analysed a sub-sample of 28 solar
analogs, 14 planet hosts and 14 stars without known planets, with spectra at
S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same
abundance pattern for both samples of stars with and without planets. This
result does not depend on either the planet mass, from 7 Earth masses to 17.4
Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In
addition, we have derived the slope of the abundance ratios as a function of
the condensation temperature for each star and again find similar distributions
of the slopes for both stars with and without planets. In particular, the peaks
of these two distributions are placed at a similar value but with opposite sign
as that expected from a possible signature of terrestial planets. In
particular, two of the planetary systems in this sample, containing each of
them a Super-Earth like planet, show slope values very close to these peaks
which may suggest that these abundance patterns are not related to the presence
of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa
Mobile Personal Healthcare System for Non-Invasive, Pervasive and Continuous Blood Pressure Monitoring: A Feasibility Study
Background: Smartphone-based blood pressure (BP) monitor using photoplethysmogram (PPG) technology has emerged as a promising approach to empower users with self-monitoring for effective diagnosis and control ofhypertension (HT).
Objective: This study aimed to develop a mobile personal healthcare system for non-invasive, pervasive, and continuous estimation of BP level and variability to be user-friendly to elderly.
Methods: The proposed approach was integrated by a self-designed cuffless, calibration-free, wireless and wearable PPG-only sensor, and a native purposely-designed smartphone application using multilayer perceptron machine learning techniques from raw signals. We performed a pilot study with three elder adults (mean age 61.3 ± 1.5 years; 66% women) to test usability and accuracy of the smartphone-based BP monitor.
Results: The employed artificial neural network (ANN) model performed with high accuracy in terms of predicting the reference BP values of our validation sample (n=150). On average, our approach predicted BP measures with accuracy \u3e90% and correlations \u3e0.90 (P \u3c .0001). Bland-Altman plots showed that most of the errors for BP prediction were less than 10 mmHg.
Conclusions: With further development and validation, the proposed system could provide a cost-effective strategy to improve the quality and coverage of healthcare, particularly in rural zones, areas lacking physicians, and solitary elderly populations
Mobile Personal Health Monitoring for Automated Classification of Electrocardiogram Signals in Elderly
Mobile electrocardiogram (ECG) monitoring is an emerging area that has received increasing attention in recent years, but still real-life validation for elderly residing in low and middle-income countries is scarce. We developed a wearable ECG monitor that is integrated with a self-designed wireless sensor for ECG signal acquisition. It is used with a native purposely designed smartphone application, based on machine learning techniques, for automated classification of captured ECG beats from aged people. When tested on 100 older adults, the monitoring system discriminated normal and abnormal ECG signals with a high degree of accuracy (97%), sensitivity (100%), and specificity (96.6%). With further verification, the system could be useful for detecting cardiac abnormalities in the home environment and contribute to prevention, early diagnosis, and effective treatment of cardiovascular diseases, while keeping costs down and increasing access to healthcare services for older persons
Shortcomings of international standard iso 9223 for the classification, determination, and estimation of atmosphere corrosivities in subtropical archipelagic conditions—The case of the Canary Islands (Spain)
grant ProID2017010042The classification, assessment, and estimation of the atmospheric corrosivity are fixed by the ISO 9223 standard. Its recent second edition introduced a new corrosivity category for extreme environments CX, and defined mathematical models that contain dose–response functions for normative corrosivity estimations. It is shown here that application of the ISO 9223 standard to archipelagic subtropical areas exhibits major shortcomings. Firstly, the corrosion rates of zinc and copper exceed the range employed to define the CX category. Secondly, normative corrosivity estimation would require the mathematical models to be redefined introducing the time of wetness and a new set of operation constants.publishersversionpublishe
- …