15,283 research outputs found

    Peaks in the Cosmic Microwave Background: flat versus open models

    Get PDF
    We present properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We obtain analytical expressions of several topological descriptors: mean number of maxima and the probability distribution of the gaussian curvature and the eccentricity of the peaks. These quantities are calculated as functions of the radiation power spectrum, assuming a gaussian distribution of temperature anisotropies. We present results for angular resolutions ranging from 5' to 20' (antenna FWHM), scales that are relevant for the MAP and COBRAS/SAMBA space missions and the ground-based interferometer experiments. Our analysis also includes the effects of noise. We find that the number of peaks can discriminate between standard CDM models, and that the gaussian curvature distribution provides a useful test for these various models, whereas the eccentricity distribution can not distinguish between them.Comment: 13 pages latex file using aasms4.sty + 3 tables + 2 postscript figures, to appear in ApJ (March 1997

    Physically-sound simulation of low-velocity impact on fiber reinforced laminates

    Full text link
    A high-fidelity virtual tool for the numerical simulation of low-velocity impact damage in unidirectional composite laminates is proposed. A continuum material model for the simulation of intraply damage phenomena is implemented in a numerical scheme as a user subroutine of the commercially available Abaqus finite element package. Delaminations are simulated using of cohesive surfaces. The use of structured meshes, aligned with fiber directions allows the physically-sound simulation of matrix cracks parallel to fiber directions, and their interaction with the development of delaminations. The implementation of element erosion criteria and the application of intraply and interlaminar friction allow for the simulation of fiber splits and their entanglement, which in turn results in permanent indentation in the impacted laminate. It is shown that this simulation strategy gives sound results for impact energies bellow and above the Barely Visible Impact Damage threshold, up to laminate perforation condition

    The GIRAFFE Inner Bulge Survey (GIBS). I. Survey Description and a kinematical map of the Milky Way bulge

    Full text link
    The Galactic bulge is a massive, old component of the Milky Way. It is known to host a bar, and it has recently been demonstrated to have a pronounced boxy/peanut structure in its outer region. Several independent studies suggest the presence of more than one stellar populations in the bulge, with different origins and a relative fraction changing across the bulge area. This is the first of a series of papers presenting the results of the Giraffe Inner Bulge Survey, carried out at the ESO-VLT with the multifibre spectrograph FLAMES. Spectra of ~5000 red clump giants in 24 bulge fields have been obtained at resolution R=6500, in the infrared Calcium triplet wavelength region at 8500 {\AA}. They are used to derive radial velocities and metallicities, based on new calibration specifically devised for this project. Radial velocities for another ~1200 bulge red clump giants, obtained from similar archive data, have been added to the sample. Higher resolution spectra have been obtained for 450 additional stars at latitude b=-3.5, with the aim of investigating chemical abundance patterns variations with longitude, across the inner bulge. In total we present here radial velocities for 6392 RC stars. We derive a radial velocity, and velocity dispersion map of the Milky Way bulge, useful to be compared with similar maps of external bulges, and to infer the expected velocities and dispersion at any line of sight. The K-type giants kinematics is consistent with the cylindrical rotation pattern of M-giants from the BRAVA survey. Our sample enables to extend this result to latitude b=-2, closer to the Galactic plane than probed by previous surveys. Finally, we find strong evidence for a velocity dispersion peak at (0,-1) and (0,-2), possibly indicative of a high density peak in the central 250 pc of the bulgeComment: A&A in pres

    Seeking the Ultraviolet Ionizing Background at z~3 with the Keck Telescope

    Full text link
    We describe the initial results of a deep long-slit emission line search for redshifted (2.7<z<4.1) Lyman-alpha. These observations are used to constrain the fluorescent Ly-alpha emission from the population of clouds whose absorption produces the higher-column-density component of the Ly-alpha forest in quasar spectra. We use the results to set an upper limit on the ultraviolet ionizing background. Our spectroscopic data obtained with the Keck II telescope at lambda/(Delta lambda FWHM)~2000 reveals no candidate Ly-alpha emission over the wavelength range of 4500-6200 Ang along a 3 arcmin slit in a 5400 s integration. Our 3 sigma upper bound on the mean intensity of the ionizing background at the Lyman limit is J(nu 0) < 2E-21 erg/s/cm**2/Hz/sr for 2.7<z<3.1 (where we are most sensitive), assuming Lyman limit systems have typical radii of 70 kpc (q_0=0.5, H_0=50 km/s/Mpc). This constraint is more than an order of magnitude more stringent than any previously published direct limit. However, it is still a factor of three above the ultraviolet background level expected due to the integrated light of known quasars at z~3. This pilot study confirms the conclusion of Gould \& Weinberg (1996) that integrations of several hours on a 10-m class telescope should be capable of measuring J(nu 0) at high redshift.Comment: 22 pages, 2 postscipt figures. Latex requires aaspp4.sty and epsf.sty (included). Accepted for publication in the Astronomical Journal (Nov 1998

    Increased fidelity of protein synthesis extends lifespan

    Get PDF
    Loss of proteostasis is a fundamental process driving aging. Proteostasis is affected by the accuracy of translation, yet the physiological consequence of having fewer protein synthesis errors during multi-cellular organismal aging is poorly understood. Our phylogenetic analysis of RPS23, a key protein in the ribosomal decoding center, uncovered a lysine residue almost universally conserved across all domains of life, which is replaced by an arginine in a small number of hyperthermophilic archaea. When introduced into eukaryotic RPS23 homologs, this mutation leads to accurate translation, as well as heat shock resistance and longer life, in yeast, worms, and flies. Furthermore, we show that anti-aging drugs such as rapamycin, Torin1, and trametinib reduce translation errors, and that rapamycin extends further organismal longevity in RPS23 hyperaccuracy mutants. This implies a unified mode of action for diverse pharmacological anti-aging therapies. These findings pave the way for identifying novel translation accuracy interventions to improve aging

    Limits on excited tau leptons masses from leptonic tau decays

    Full text link
    We study the effects induced by excited leptons on the leptonic tau decay at one loop level. Using a general effective lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the leptonic decays and use the current experimental values of the branching ratios to put limits on the mass of excited states and the substructure scale.Comment: 10 pages, 6 figures, to be published in Phys. Rev.

    Detection of vortex tubes in solar granulation from observations with Sunrise

    Full text link
    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these `granular lanes' are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.Comment: Astrophysical Journal Letters: Sunrise Special Issue, reveived 2010 June 16; accepted 2010 August

    Effect of Void Network on CMB Anisotropy

    Full text link
    We study the effect of a void network on the CMB anisotropy in the Einstein-de Sitter background using Thompson &Vishniac's model. We consider comprehensively the Sacks-Wolfe effect, the Rees-Sciama effect and the gravitational lensing effect. Our analysis includes the model of primordial voids existing at recombination, which is realized in some inflationary models associated with a first-order phase transition. If there exist primordial voids whose comoving radius is larger than ∌10h−1\sim10h^{-1}Mpc at recombination, not only the Sachs-Wolfe effect but also the Rees-Sciama effect is appreciable even for multipoles l\lsim1000 of the anisotropy spectrum. The gravitational lensing effect, on the other hand, slightly smoothes the primary anisotropy; quantitatively, our results for the void model are similar to the previous results for a CDM model. All the effects, together, would give some constraints on the configuration or origin of voids with high-resolution data of the CMB anisotropy.Comment: 23 pages, latex, 12 eps figures, some calculations and discussions are added, to appear in ApJ 510 (1999

    Differential Gene Expression Profiles Reflecting Macrophage Polarization in Aging and Periodontitis Gingival Tissues

    Get PDF
    Recent evidence has determined a phenotypic and functional heterogeneity for macrophage populations. This plasticity of macrophage function has been related to specific properties of subsets (M1 and M2) of these cells in inflammation, adaptive immune responses and resolution of tissue destructive processes. This investigation hypothesized that targeted alterations in the distribution of macrophage phenotypes in aged individuals, and with periodontitis would be skewed towards M1 inflammatory macrophages in gingival tissues. The study used a non-human primate model to evaluate gene expression profiles as footprints of macrophage variation in healthy and periodontitis gingival tissues from animals 3-23 years of age and in periodontitis tissues in adult and aged animals. Significant increases in multiple genes reflecting overall increases in macrophage activities were observed in healthy aged tissues, and were significantly increased in periodontitis tissues from both adults and aged animals. Generally, gene expression patterns for M2 macrophages were similar in healthy young, adolescent and adult tissues. However, modest increases were noted in healthy aged tissues, similar to those seen in periodontitis tissues from both age groups. M1 macrophage gene transcription patterns increased significantly over the age range in healthy tissues, with multiple genes (e.g. CCL13, CCL19, CCR7 and TLR4) significantly increased in aged animals. Additionally, gene expression patterns for M1 macrophages were significantly increased in adult health versus periodontitis and aged healthy versus periodontitis. The findings supported a significant increase in macrophages with aging and in periodontitis. The primary increases in both healthy aged tissues and, particularly periodontitis tissues appeared in the M1 phenotype
    • 

    corecore