4,863 research outputs found
Visual ecology of aphids – a critical review on the role of colours in host finding
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms.
Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region.
We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours
that are not likely to hold. Finally we also discuss the
implications for developing and optimising strategies
of aphid control and monitoring
A Computational Approach for Designing Tiger Corridors in India
Wildlife corridors are components of landscapes, which facilitate the
movement of organisms and processes between intact habitat areas, and thus
provide connectivity between the habitats within the landscapes. Corridors are
thus regions within a given landscape that connect fragmented habitat patches
within the landscape. The major concern of designing corridors as a
conservation strategy is primarily to counter, and to the extent possible,
mitigate the effects of habitat fragmentation and loss on the biodiversity of
the landscape, as well as support continuance of land use for essential local
and global economic activities in the region of reference. In this paper, we
use game theory, graph theory, membership functions and chain code algorithm to
model and design a set of wildlife corridors with tiger (Panthera tigris
tigris) as the focal species. We identify the parameters which would affect the
tiger population in a landscape complex and using the presence of these
identified parameters construct a graph using the habitat patches supporting
tiger presence in the landscape complex as vertices and the possible paths
between them as edges. The passage of tigers through the possible paths have
been modelled as an Assurance game, with tigers as an individual player. The
game is played recursively as the tiger passes through each grid considered for
the model. The iteration causes the tiger to choose the most suitable path
signifying the emergence of adaptability. As a formal explanation of the game,
we model this interaction of tiger with the parameters as deterministic finite
automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201
A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales
Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota
The intestinal microbiota plays important roles in digestion and resistance
against entero-pathogens. As with other ecosystems, its species composition is
resilient against small disturbances but strong perturbations such as
antibiotics can affect the consortium dramatically. Antibiotic cessation does
not necessarily restore pre-treatment conditions and disturbed microbiota are
often susceptible to pathogen invasion. Here we propose a mathematical model to
explain how antibiotic-mediated switches in the microbiota composition can
result from simple social interactions between antibiotic-tolerant and
antibiotic-sensitive bacterial groups. We build a two-species (e.g. two
functional-groups) model and identify regions of domination by
antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of
multistability where domination by either group is possible. Using a new
framework that we derived from statistical physics, we calculate the duration
of each microbiota composition state. This is shown to depend on the balance
between random fluctuations in the bacterial densities and the strength of
microbial interactions. The singular value decomposition of recent metagenomic
data confirms our assumption of grouping microbes as antibiotic-tolerant or
antibiotic-sensitive in response to a single antibiotic. Our methodology can be
extended to multiple bacterial groups and thus it provides an ecological
formalism to help interpret the present surge in microbiome data.Comment: 20 pages, 5 figures accepted for publication in Plos Comp Bio.
Supplementary video and information availabl
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
publication in JHE
Orbifold equivalence for finite density QCD and effective field theory
In the large N_c limit, some apparently different gauge theories turn out to
be equivalent due to large N_c orbifold equivalence. We use effective field
theory techniques to explore orbifold equivalence, focusing on the specific
case of a recently discovered relation between an SO(2N_c) gauge theory and
QCD. The equivalence to QCD has been argued to hold at finite baryon chemical
potential, \mu_B, so long as one deforms the SO(2N_c) theory by certain
"double-trace" terms. The deformed SO(2N_c) theory can be studied without a
sign problem in the chiral limit, in contrast to SU(N_c) QCD at finite \mu_B.
The purpose of the double-trace deformation in the SO(2N_c) theory is to
prevent baryon number symmetry from breaking spontaneously at finite density,
which is necessary for the equivalence to large N_c QCD to be valid. The
effective field theory analysis presented here clarifies the physical
significance of double-trace deformations, and strongly supports the proposed
equivalence between the deformed SO(2N_c) theory and large N_c QCD at finite
density.Comment: 39 pages, 5 figures, 2 tables. v2: Minor typo fixes and
clarification
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
- …
