21 research outputs found

    A Novel Method for Inducing Amastigote-To-Trypomastigote Transformation In Vitro in Trypanosoma cruzi Reveals the Importance of Inositol 1,4,5-Trisphosphate Receptor

    Get PDF
    Background Trypanosoma cruzi is a parasitic protist that causes Chagas disease, which is prevalent in Latin America. Because of the unavailability of an effective drug or vaccine, and because about 8 million people are infected with the parasite worldwide, the development of novel drugs demands urgent attention. T. cruzi infects a wide variety of mammalian nucleated cells, with a preference for myocardial cells. Non-dividing trypomastigotes in the bloodstream infect host cells where they are transformed into replication-capable amastigotes. The amastigotes revert to trypomastigotes (trypomastigogenesis) before being shed out of the host cells. Although trypomastigote transformation is an essential process for the parasite, the molecular mechanisms underlying this process have not yet been clarified, mainly because of the lack of an assay system to induce trypomastigogenesis in vitro. Methodology/Principal Findings Cultivation of amastigotes in a transformation medium composed of 80% RPMI-1640 and 20% Grace\u27s Insect Medium mediated their transformation into trypomastigotes. Grace\u27s Insect Medium alone also induced trypomastigogenesis. Furthermore, trypomastigogenesis was induced more efficiently in the presence of fetal bovine serum. Trypomastigotes derived from in vitro trypomastigogenesis were able to infect mammalian host cells as efficiently as tissue-culture-derived trypomastigotes (TCT) and expressed a marker protein for TCT. Using this assay system, we demonstrated that T. cruzi inositol 1,4,5-trisphosphate receptor (TcIP3R) - an intracellular Ca2+ channel and a key molecule involved in Ca2+ signaling in the parasite - is important for the transformation process. Conclusion/Significance Our findings provide a new tool to identify the molecular mechanisms of the amastigote-totrypomastigote transformation, leading to a new strategy for drug development against Chagas disease

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    The Trypanosoma cruzi metacyclic-specific protein Met-III associates with the nucleolus and contains independent amino and carboxyl terminal targeting elements.

    Get PDF
    Metacyclogenesis in Trypanosoma cruzi involves the differentiation of replicating non-infective epimastigotes into non-replicating metacyclic trypomastigotes. This pre-adapts parasites for infection of the mammalian host and is characterised by several morphological changes and structural alterations to the nucleus, including nucleolar disaggregation. Experimental investigation of these developmental processes has been hampered by a lack of robust molecular markers. Here, we describe the precise temporal expression of the T. cruzi-specific protein Met-III, in the genome reference strain CL Brener. Expression is restricted to metacyclics in the insect stages of the life-cycle and is rapidly down-regulated following invasion of mammalian cells. Met-III localises to dispersed foci typical of the disassembled nucleolus in metacyclics and to the discrete single nucleolus of cells soon after macrophage invasion. To identify elements that target Met-III, we generated a series of tagged green fluorescent protein fusion proteins and examined their sub-nuclear location in transformed parasites. These experiments demonstrated that amino and carboxyl terminal fragments, characterised by clusters of basic residues, could independently mediate nucleolar sequestration. To investigate the function of Met-III, we used gene deletion. This showed that Met-III is not required for the development of metacyclic trypomastigotes and that null mutants can complete the life-cycle in vitro

    Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation.

    No full text
    Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity
    corecore