1,325 research outputs found
Cosmological simulations using a static scalar-tensor theory
We present CDM -body cosmological simulations in the framework of
a static general scalar-tensor theory of gravity. Due to the influence of the
non-minimally coupled scalar field, the gravitational potential is modified by
a Yukawa type term, yielding a new structure formation dynamics. We present
some preliminary results and, in particular, we compute the density and
velocity profiles of the most massive group.Comment: 4 pages, 6 figures, to appear in Journal of Physics: Conference
Series: VII Mexican School on Gravitation and Mathematical Physics. 26
November to 1 December 2006, Playa del Carmen, Quintana Roo, Mexic
A Spatial Distribution Study of Faunal Remains from Two Lower Magdalenian Occupation Levels in El Mirón Cave, Cantabria, Spain
Abstract: Human behaviour can be reconstructed by analysing specific activities and campsite organization using spatial analysis. The dense occupation layers of the Lower Cantabrian Magdalenian in the Northern Spain reveal varied aspects of Upper Palaeolithic lifeways, including evidence of specific localized activities. The outer vestibule of El Mirón cave has a particularly rich and intact Lower Magdalenian occupation horizon, Levels 15–17. The excavations in the outer vestibule “Cabin” area of the site revealed excellent bone preservation. Artefacts and faunal remains were individually recorded and sediments water-screened to yield a large sample of archaeological finds and spatial data. Zooarchaeological analysis provided the taxonomic, anatomic and taphonomic determination of the faunal individual finds. Smaller animal remains were categorized and counted; special attention was given to the identification of anthropogenic modifications such as burnt bones or bone flakes. These small refuse items are considered to be useful, in situ indicators of localized activities. The spatial distribution analysis of this dense and complex palimpsest of El Mirón Lower Cantabrian Magdalenian layers required GIS based methods including density analysis, heatmaps and cluster analysis. Based on the spatial distribution of Level 15 and 16 faunal remains, different activity areas were identified comprising hearth, working and dropping zones. These results imply the deliberately segregated use of space within the Lower Cantabrian Magdalenian site area, in which bone-processing activities played a central rol
Spain: Underwater Exploration on a Narrow Continental Shelf
In spite of Spain’s long coastline (nearly 8000 km) and its well-established tradition in underwater archaeology, the prehistoric settlement of the continental shelf is practically
unknown with very few finds. Underwater research has focused on naval archaeology and, until very recently, no attempt had been made to look for prehistoric underwater sites. In the past decade,new research projects have been launched to explore selected areas on the Cantabrian shelf and offshore of Gibraltar. This chapter summarises the currently available evidence of submerged prehistoric archaeology and the preliminary results of these new project
Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain
Stellar magnetic activity produces time-varying distortions in the
photospheric line profiles of solar-type stars. These lead to systematic errors
in high-precision radial-velocity measurements, which limit efforts to discover
and measure the masses of low-mass exoplanets with orbital periods of more than
a few tens of days. We present a new data-driven method for separating Doppler
shifts of dynamical origin from apparent velocity variations arising from
variability-induced changes in the stellar spectrum. We show that the
autocorrelation function (ACF) of the cross-correlation function used to
measure radial velocities is effectively invariant to translation. By
projecting the radial velocities on to a subspace labelled by the observation
identifiers and spanned by the amplitude coefficients of the ACF's principal
components, we can isolate and subtract velocity perturbations caused by
stellar magnetic activity. We test the method on a 5-year time sequence of 853
daily 15-minute observations of the solar spectrum from the HARPS-N instrument
and solar-telescope feed on the 3.58-m Telescopio Nazionale Galileo. After
removal of the activity signals, the heliocentric solar velocity residuals are
found to be Gaussian and nearly uncorrelated. We inject synthetic low-mass
planet signals with amplitude cm s into the solar observations at
a wide range of orbital periods. Projection into the orthogonal complement of
the ACF subspace isolates these signals effectively from solar activity
signals. Their semi-amplitudes are recovered with a precision of cm
s, opening the door to Doppler detection and characterization of
terrestrial-mass planets around well-observed, bright main-sequence stars
across a wide range of orbital periods
Nanomaterial-based Sensors for the Study of DNA Interaction with Drugs
The interaction of drugs with DNA has been searched thoroughly giving rise to an endless number of findings of undoubted importance, such as a prompt alert to harmful substances, ability to explain most of the biological mechanisms, or provision of important clues in targeted development of novel chemotherapeutics. The existence of some drugs that induce oxidative damage is an increasing point of concern as they can cause cellular death, aging, and are closely related to the development of many diseases. Because of a direct correlation between the response, strength/ nature of the interaction and the pharmaceutical action of DNA-targeted drugs, the electrochemical analysis is based on the signals of DNA before and after the interaction with the DNA-targeted drug. Nowadays, nanoscale materials are used extensively for offering fascinating characteristics that can be used in designing new strategies for drug-DNA interaction detection. This work presents a review of nanomaterials (NMs) for the study of drug-nucleic acid interaction. We summarize types of drug-DNA interactions, electroanalytical techniques for evidencing these interactions and quantification of drug and/or DNA monitoring
Shells and humans: molluscs and other coastal resources from the earliest human occupations at the Mesolithic shell midden of El Mazo (Asturias, Northern Spain)
Human populations exploited coastal areas with intensity during the Mesolithic in Atlantic Europe, resulting in the accumulation of large shell middens. Northern Spain is one of the most prolific regions, and especially the so-called Asturian area. Large accumulations of shellfish led some scholars to propose the existence of intensification in the exploitation of coastal resources in the region during the Mesolithic. In this paper, shell remains (molluscs, crustaceans and echinoderms) from stratigraphic units 114 and 115 (dated to the early Mesolithic c. 9 kys cal BP) at El Mazo cave (Asturias, northern Spain) were studied in order to establish resource exploitation patterns and environmental conditions. Species representation showed that limpets, top shells and sea urchins were preferentially exploited. One-millimetre mesh screens were crucial in establishing an accurate minimum number of individuals for sea urchins and to determine their importance in exploitation patterns. Environmental conditions deduced from shell assemblages indicated that temperate conditions prevailed at the time of the occupation and the morphology of the coastline was similar to today (rocky exposed shores). Information recovered relating to species representation, collection areas and shell biometry reflected some evidence of intensification (reduced shell size, collection in lower areas of exposed shores, no size selection in some units and species) in the exploitation of coastal resources through time. However, the results suggested the existence of changes in collection strategies and resource management, and periods of intense shell collection may have alternated with times of shell stock recovery throughout the Mesolithic.This research was performed as part of the project “The human response to the global climatic change in a littoral zone: the case of the transition to the Holocene in the Cantabrian coast (10,000–5000 cal BC) (HAR2010-22115-C02-01)” funded by the Spanish Ministry of Economy and Competitiveness. AGE was funded by the University of Cantabria through a predoctoral grant and IGZ was funded by the Spanish Ministry of Economy and Competitiveness through a Juan de la Cierva grant. We also would like to thank the University of Cantabria and the IIIPC for providing support, David Cuenca-Solana, Alejandro García Moreno and Lucia Agudo Pérez for their help. We also thank Jennifer Jones for correcting the English. Comments from two anonymous reviewers helped to improve the paper
- …