432 research outputs found

    Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Get PDF
    BD+6073 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. We obtained high-resolution spectra of BD+6073 at different epochs. We used the FASTWind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We have also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. BD +6073 is a BN0.7 Ib low-luminosity supergiant located at an approximate distance of 3.1 kpc, in the CasOB4 association. We derive Teff=24000 K and log gc=3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1 sigma level with a mass of 15 solar masses. The recurrence time of the X-ray flares is the orbital period of the system. The NS is in a high eccentricity (e=0.56) orbit, and the X-ray emission is strongly peaked around orbital phase 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. The X-ray behaviour of IGR J00370+6122 is reminiscent of intermediate SFXTs, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which, combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.Comment: Accepted for publication in A&

    Absorptive capacity in new ventures: differences among corporate ventures and independent ventures

    Get PDF
    This paper describes a study of the effects of venture origin on ACAP dimensions addressing two questions: how differently do corporate ventures (CVs) and independent ventures (IVs) build their ACAP? And, what are the effects of these differing ways of building ACAP on the new venture performance (NVP) and strategic variety? In answering these questions, we build on three related theoretical perspectives: resource-based view (Barney, 1991; Peteraf, 1993), knowledge-based theory (Grant, 1996), and the dynamic capabilities approach (Teece et al., 1997; Winter, 2003). Using data from face-to-face interviews and surveys on 140 new ventures, our results show that CVs primarily focus on developing the ACAP processes of acquisition and assimilation of new external knowledge when compared to IVs; and that IVs center their efforts in commercially exploiting the knowledge externally acquired. We did not find evidence of significant differences among CVs and IVs in their strategic variety. Yet, we found that an emphasis on potential ACAP is positively associated with the strategic variety of both CVs and IVs. Finally, our results reveal that ACAP is not directly related to NVP

    X-ray Observations of Bow Shocks around Runaway O Stars. The Case of ζ Oph and BD+43°3654

    Get PDF
    Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 106 K. The cometary shape of this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43°3654 is puzzling, as non-thermal emission has been reported in a previous work for this source

    Focal-plane generation of multi-resolution and multi-scale image representation for low-power vision applications

    Get PDF
    Comunicación presentada al "XXXVII Infrared Technology and Applications" celebrado en Orlando (USA) el 25 de Abril del 2011.Early vision stages represent a considerably heavy computational load. A huge amount of data needs to be processed under strict timing and power requirements. Conventional architectures usually fail to adhere to the specifications in many application fields, especially when autonomous vision-enabled devices are to be implemented, like in lightweight UAVs, robotics or wireless sensor networks. A bioinspired architectural approach can be employed consisting of a hierarchical division of the processing chain, conveying the highest computational demand to the focal plane. There, distributed processing elements, concurrent with the photosensitive devices, influence the image capture and generate a pre-processed representation of the scene where only the information of interest for subsequent stages remains. These focal-plane operators are implemented by analog building blocks, which may individually be a little imprecise, but as a whole render the appropriate image processing very efficiently. As a proof of concept, we have developed a 176x144-pixel smart CMOS imager that delivers lighter but enriched representations of the scene. Each pixel of the array contains a photosensor and some switches and weighted paths allowing reconfigurable resolution and spatial filtering. An energy-based image representation is also supported. These functionalities greatly simplify the operation of the subsequent digital processor implementing the high level logic of the vision algorithm. The resulting figures, 5.6m W@30fps, permit the integration of the smart image sensor with a wireless interface module (Imote2 from Memsic Corp.) for the development of vision-enabled WSN applications.This work is partially funded by the Andalusian regional government (Junta de Andalucía-CICE) through project 2006-TIC-2352 and the Spanish Ministry of Science (MICINN) through project TEC 2009-11812, co-funded by the European Regional Development Fund, and also supported by the Office of Naval Research (USA), through grant N000141110312.Peer Reviewe

    Artrosis vertebral en la población de La Encantada (Granátula de Calatrava, Ciudad Real, II milenio a. C.)

    Full text link
    X Congreso Nacional de Paleopatología. Univesidad Autónoma de Madrid, septiembre de 200
    corecore