61 research outputs found

    Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    Get PDF
    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life

    Smartphones on the air track. Examples and difficulties

    Get PDF
    In this paper we describe a classical experiment with an air track in which smartphones are used as experimental devices to obtain physical data. The proposed experiment allows users to easily observe and measure relationships between physical magnitudes, conservation of momentum in collisions and friction effects on movement by utilizing the users’ own mobile devices

    Física en el Bolsillo

    Get PDF
    Innovación EducativaLos sensores de los smartphones permiten la utilización de estos en el aprendizaje práctico de la física tanto en el laboratorio como fuera de el. Se presentan algunos ejemplos de experiencias realizadas con estos dispositivosFísica AplicadaDepartamento de Física de la Materia CondensadaPonencia invitada en las XI Jornadas de Enseñanza de la Física, que tuvieron lugar en la Universidad de Burgos en septiembre de 2016

    El laboratorio en el bolsillo: Aprendiendo física con tu smartphone

    Get PDF
    La enseñanza de la física está fuertemente basada en el trabajo experimental de los alumnos. El trabajo en el laboratorio les permite aprender el uso de material y técnicas experimentales o de análisis, pero también las limitaciones de las leyes teóricas y de los datos obtenidos en el laboratorio. Se trata, entonces, de un trabajo fundamental para un aprendizaje y comprensión más completos de la física y debe entonces reforzarse, tanto desde un punto de vista práctico como haciéndolo más atractivo y motivando el trabajo autónomo de los alumnos. En muchas situaciones, sin embargo, razones presupuestarias o de número de alumnos limitan las posibilidades de trabajo experimental de los estudiantes. En este artículo divulgativo mostramos cómo los teléfonos móviles, que todos los alumnos llevan consigo casi de manera permanente, pueden convertirse en herramientas muy útiles tanto para realizar algunos experimentos sencillos de física como para motivar el trabajo personal de los alumnos y hacerles más interesante y atractivo el aprendizaje de la física

    Measuring the coefficient of restitution and more: a simple experiment to promote students’ critical thinking and autonomous work

    Get PDF
    Innovación EducativaAbstract A simple experiment on the determination of the coefficient of restitution of different materials is taken as the basis of an extendable work that can be done by the students in an autonomous way. On the whole, the work described in this paper would involve concepts of kinematics, materials science, air drag and buoyancy, and would help students to think of physics as a whole subject instead of a set of, more or less, isolated parts. The experiment can be done either in teaching laboratories or as an autonomous work by students at home. Students’ smartphones and cheap balls of different materials are the only experimental materials required to do the experiment. The proposed work also permits the students to analyse the limitations of a physical model used in the experiment by analysing the approximations considered in it, and then enhancing their critical thinking

    GIREP

    Get PDF
    Transparencias de la charla que se impartirá en el congreso GIREP que se celebrará en julio de 2017 en Dubli

    Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

    Get PDF
    Today’s photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical grade Si solar cells are studied using these two techniques.Ministerio de Economía, Industria y Competitividad (ENE2014-56069-C4-4-R)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. Project VA081U16

    EUPVSEC 2018

    Get PDF
    There are many characterization techniques available to evaluate the health of solar panels, such as I-V characterization, infrared thermography (IR), photoluminescence (PL) and electroluminescence (EL). EL imaging has become in recent years a powerful diagnostic tool to evaluate PV modules. EL images allow to detect several defects and degradation modes in the solar cells. The failures are observed as dark contrasted areas in the images. Broad dark regions can be detected even in a low resolution image, while a high resolution image is needed to detect some more specific problems such as cracks, multi-cracks or other line-shaped defects.PósterJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA081U16)Ministerio de Economía, Industria y Competitividad (Proyect ENE2014-56069-C4-4-R

    Experimentando y Aprendiendo Física con Smartphones

    Get PDF
    For a better understanding and learning physics students need practical experimentation as much as teachers' theoretical explanations. Sometimes experimental equipment costs or time availability limit the students work in the laboratory. Current smartphones are powerful calculation devices with built-in sensors which can be used as measurement tools in many simple physics experiments by replacing more expensive laboratory equipment and also allow the students to do experiments by themselves along everyday activities increasing students' autonomous work and engagement. In this work we describe briefly some experiments performed with smartphones and discuss their results and learning interest

    Electroluminescence Imaging and Light-Beam Induced Current as characterization techniques of Multi-Crystalline Si Solar Cells

    Get PDF
    There is an increasing demand for characterizing multicrystalline solar cells at different stages of its service life. Luminescence techniques, e.g. electroluminescence (EL) and photoluminescence (PL), have acquired a paramount interest in the last years. These techniques are used in imaging mode, allowing to take a luminescence picture at a full wafer/cell scale. This imaging approach is fast and sensitive, but has a low spatial resolution, which avoids a detailed analysis of the defect distribution, which can led to misinterpretations about critical parameters as the minority carrier diffusion length, or the internal and external quantum efficiencies. If one complements these techniques with high spatial resolution techniques, such as light beam induced current (LBIC), one can study the electrical activity of the defects at a micrometric scale, providing additional understanding about the role played by the defects in full wafer/cell luminescence images. The combination of the macroscopic and microscopic resolution scales is necessary for the analysis of the full luminescence images in mc-Si solar cells.Proyecto de Investigación ENE2014-56069-C4- 4-R (MCIN)Proyecto de Investigación ENE2017-89561-C4-3-R (MCIN)Proyecto de Investigación VA081U16 (Junta de Castilla y León
    corecore