19 research outputs found

    A Conversational Bot Expert in TCP/IP

    Get PDF
    When studying a telecommunication degree, it can be sometimes hard to remember all concepts or memorizing in detail how certain protocols work. To answer this problem, this project aimed to study how to create a bot in order to answer simple questions regarding the TCP/IP protocols. First of all, it was necessary to analyse general information about conversational bots and programming tools in order to choose how to make the best implementation possible. Afterwards, we proposed different design alternatives that had to be done in order to develop the bot. These alternatives included the creation of a new algorithm to analyse text from users and obtain the main concepts for creating answers to questions. Finally, we divided TeCePe’s implementation in programming modules that perform each of its functionalities separately to make easier its analysis and addition to the general code. Users’ results suggest that bots like TeCePe could provide some benefits to students while studying a subject. They usually prefer realistic human interactions and want more additional features besides bot’s main functionality in order to be encouraged to use conversational bots, which are not very popular in the education field at this moment. The main results of this project are generally favourable, as the bot developed fulfilled most requirements using all algorithms proposed. TeCePe is fast when searching, and can correctly detect users’ intention in order to output the best possible answer.Al estudiar un grado en ingeniería de telecomunicaciones, puede ocurrir que sea difícil recordar todos los conceptos dados en clase o memorizar cómo funcionan algunos protocolos. Para resolver este problema, en este proyecto se ha estudiado como crear un bot para resolver preguntas sencillas relacionadas con los protocolos TCP/IP. En primer lugar fue necesario un análisis sobre los bots conversacionales y herramientas de programación para poder realizar la mejor implementación posible. A continuación se propusieron diferentes alternativas de diseño que deberían realizarse para desarrollar el bot. Estas alternativas incluyen crear un nuevo algoritmo para analizar textos de los usuarios y obtener los principales conceptos e ideas para crear las respuestas del bot. Por último, dividimos la implementación de TeCePe en diferentes módulos de programación, realizando cada una de las funciones de TeCePe por separado para hacer la programación más sencilla y facilitar su integración con el código principal. Los resultados con usuarios sugieren que bots como TeCePe podrían otorgar algunos beneficios a los estudiantes que estén estudiando una asignatura concreta. Normalmente prefieren interacciones realistas (similares a las humanas) y quieren funcionalidades extra para que estén motivados a utilizar bots conversacionales, que no son muy populares en el campo educativo por el momento. Los principales resultados del proyecto son generalmente favorables, puesto que el bot desarrollado cumple la mayoría de los requisitos utilizando todos los algoritmos propuestos anteriormente. TeCePe es rápido en sus búsquedas y puede detectar las intenciones de los usuarios para dar la mejor respuesta posible en cada caso.Ingeniería Telemátic

    Link layer Connectivity as a Service for Ad-hoc Microservice Platforms

    Get PDF
    Microservice platforms have brought many advantages to support the deployment of light-weight applications at both near the edge and data centers. Still, their suitability to support telecommunication and vertical services beyond the network edge is far from being a reality. On one hand, their flat networking approach does not support the establishment of link-layer connectivity among the different components of telecommunication and vertical services (e.g., access points, routers, specific-purpose servers, etc.) due to their reliance on high-level APIs. On the other hand, their networking approach has not been designed to operate over ad hoc networks built by the resource-constrained devices that may be available beyond the network edge. This can lead to suboptimal behaviors for the delivery of data traffic between microservices. This article presents the results of a research collaboration between Universidad Carlos III of Madrid and Telefónica: L2S-M. Our solution provides a programmable data plane that enables the establishment of on-demand link layer connectivity between microservices on ad hoc networks. This solution has the flexibility to execute different algorithms to build traffic paths between microservices, as well as to react against temporary link breakdowns, which could be present in these types of networks. The article presents a proof of concept for a functional validation of L2S-M, using an aerial ad hoc network deployed at 5TONIC Laboratory in collaboration with Telefonica. The validation results showcase the proper operation of L2S-M as a networking service for microservice platforms in ad hoc networks, including its ability to reconfigure the programmable data plane when link disruptions occur.This article has been supported by the TRUE5G (PID2019-108713RB681) project funded by the Spanish National Research Agency (MCIN/AEI/10.13039/5011000110) and by the H2020 FISHY Project (Grant agreement ID: 952644)

    A Comparative Study of Virtual Infrastructure Management Solutions for UAV Networks

    Get PDF
    Proceeding of 7th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (DroNet) (Dronet'21), June 24, 2021, Virtual, WI, USA, co-located with ACM MobiSys 2021.The promising combination of Unmanned Aerial Vehicles (UAVs) with network virtualisation technologies has positively shown many advantages enabling the deployment of communication services over aerial networks, that is, networks conformed by a set of interconnected UAVs. However, this synergy may certainly involve diverse challenges that must be carefully considered. In this respect, this paper compares some of the most common virtual infrastructure management solutions that could potentially be used to deal with virtualised payloads over aerial networks, identifying their main strength and limitations. The paper also presents a preliminary exploration on the utilisation of the Kubernetes virtual infrastructure management platform to support value-added services over UAV networks, showing off its potential as a suitable platform to this purpose.We would like to thank Andrew Mcgregor, Bob Briscoe and Rubén Cuevas Rumín for providing helpful information and comments. The work of Anna Maria Mandalari has been funded by the EU FP7 METRICS (607728) project. The work of Marcelo Bagnulo has been funded by the EU FP7 Trilogy2 (317756) project.Publicad

    An NFV system to support service provisioning on UAV networks

    Get PDF
    In this presentation, we will first describe the design and implementation of an NFV system capable of deploying moderately complex network services over a wireless ad-hoc network of resource-constrained compute nodes. The system design targets aerial networks built by Unmanned Aerial Vehicles (UAVs), and it relies on container virtualization to support the execution of network functions within constrained environments, as well as on mobile ad-hoc networking to support the underlying end-to-end network communications [1]. The presentation will also cover the implementation experience from developing this NFV system, which is based on relevant and widely-adopted open-source technologies in the NFV arena such as ETSI Open-Source MANO (OSM) and OpenStack. In addition, we will present the details concerning the integration of this system into a distributed NFV testbed spanning three different remote sites in Spain, i.e., Universidad Carlos III de Madrid (UC3M), Universidad Politécnica de Cataluña (UPC), and Universidad del País Vasco (UPV-EHU). The goal of this testbed is to explore synergies among NFV, UAVs, and 5G vertical services, following a practical approach primarily governed by experimentation. To showcase the potential of this testbed to support vertical services, we will present three different use cases that have been realized as part of our prior research work: i) the automated deployment of an IP telephony service on a delimited geographic area, using a network of interconnected UAVs [2] (noteworthily, this work was awarded by ETSI as the best proof-of-concept demonstration with OSM during the OSM Release Eight cycle [3]); ii) the realization of a smart farming vertical service [4]; and iii) a public-safety vertical use case, which uses aerial and vehicular NFV infrastructures to monitor traffic conditions and handle emergency situations [5]. This latter involves an international collaboration with the Instituto de Telecomunicações of Aveiro, which operates a vehicular NFV infrastructure. Finally, the presentation will tackle the standardization challenges related with the future view of a decentralized and flexible MANO framework, capable of supporting the operation of cost-effective, reliable services beyond the edge of the telecommunication operator infrastructures. In this view, multiple stakeholders would collaboratively provide a wide range of heterogeneous compute-connect devices (e.g., end-user terminals, CPEs, or UAV swarms). These devices might exist and be opportunistically used, or they could otherwise be deployed on-demand by those stakeholders, contributing to the availability of a potentially unlimited pool of network, computing, and storage resources beyond the network edge. This view introduces several standardization challenges to the NFV MANO framework in terms of interoperation, flexibility, robustness, and security. These challenges have been presented at the NFV Evolution1 event organized by ETSI, and will build the basis of our future work in this research line.This work has been partially supported by the European H2020 LABYRINTH project (grant agreement H2020-MG-2019-TwoStages-861696), and by the TRUE5G project (PID2019-108713RB-C52PID2019-108713RBC52/AEI/10.13039/501100011033) funded by the Spanish National Research Agency

    A Link-Layer Virtual Networking Solution for Cloud-Native Network Function Virtualisation Ecosystems: L2S-M

    Get PDF
    Microservices have become promising candidates for the deployment of network and vertical functions in the fifth generation of mobile networks. However, microservice platforms like Kubernetes use a flat networking approach towards the connectivity of virtualised workloads, which prevents the deployment of network functions on isolated network segments (for example, the components of an IP Telephony system or a content distribution network). This paper presents L2S-M, a solution that enables the connectivity of Kubernetes microservices over isolated link-layer virtual networks, regardless of the compute nodes where workloads are actually deployed. L2S-M uses software-defined networking (SDN) to fulfil this purpose. Furthermore, the L2S-M design is flexible to support the connectivity of Kubernetes workloads across different Kubernetes clusters. We validate the functional behaviour of our solution in a moderately complex Smart Campus scenario, where L2S-M is used to deploy a content distribution network, showing its potential for the deployment of network services in distributed and heterogeneous environments.This article has partially been supported by the H2020 FISHY Project (Grant agreement ID: 952644) and by the TRUE5G project (PID2019-108713RB681) funded by the Spanish National Research Agency (MCIN/AEI/10.13039/5011000110)

    NFV orchestration on intermittently available SUAV platforms: challenges and hurdles

    Get PDF
    Proceeding of: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS MiSARN 2019: Mission-Oriented Wireless Sensor, UAV and Robot Networking), 29 April-2 May 2019 Paris, FranceIn this paper, we analyze the main challenges and issues related with the orchestration of Virtualized Network Functions (VNFs) on Small Unmanned Aerial Vehicles (SUAVs). Our analysis considers a reference scenario where a number of SUAVs are deployed over a delimited geographic area and provide a mobile cloud environment that supports the deployment of functionalities using Network Functions Virtualization (NFV) technologies. The orchestration of services in this reference scenario presents different challenges, due to the constrained capacity and limited lifetime of battery-powered SUAVs, the intermittent availability of network communications, and the need to consider enhanced policies for the allocation of virtual functions to SUAVs. Finally, we perform a first exploratory evaluation of the identified challenges and issues, using a well-known and widely adopted virtualized infrastructure manager, i.e., OpenStack.This article has been partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795- C6-3-R) funded by the Spanish Ministry of Economy and Competitiveness

    Integration of 5G experimentation infrastructures into a multi-site NFV ecosystem

    Get PDF
    Network Function Virtualization (NFV) has been regarded as one of the key enablers for the 5th Generation of mobile networks, or 5G. This paradigm allows to reduce the dependence on specialized hardware to deploy telecommunications and vertical services. To this purpose, it relies on virtualization techniques to softwarize network functions, simplifying their development and reducing deployment time and costs. In this context, Universidad Carlos III de Madrid, Telefónica, and IMDEA Networks Institute have developed an NFV ecosystem inside 5TONIC, an open network innovation center focused on 5G technologies, enabling the creation of complex, close to reality experimentation scenarios across a distributed set of NFV infrastructures, which can be made available by stakeholders at different geographic locations. This article presents the protocol that has been defined to incorporate new remote NFV sites into the multi-site NFV ecosystem based on 5TONIC, describing the requirements for both the existing and the newly incorporated infrastructures, their connectivity through an overlay network architecture, and the steps necessary for the inclusion of new sites. The protocol is exemplified through the incorporation of an external site to the 5TONIC NFV ecosystem. Afterwards, the protocol details the verification steps required to validate a successful site integration. These include the deployment of a multi-site vertical service using a remote NFV infrastructure with Small Unmanned Aerial Vehicles (SUAVs). This serves to showcase the potential of the protocol to enable distributed experimentation scenarios.This work was partially supported by the European H2020 LABYRINTH project (grant agreement H2020-MG-2019-TwoStages-861696), and by the TRUE5G project (PID2019-108713RB-C52PID2019-108713RB-C52 / AEI / 10.13039/501100011033) funded by the Spanish National Research Agency. In addition, the work of Borja Nogales, Ivan Vidal and Diego R. Lopez has partially been supported by the European H2020 5G-VINNI project (grant agreement number 815279). Finally, the authors thank Alejandro Rodríguez García for his support during the realization of this work

    An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition

    Get PDF
    [ENG]Importance Strategies targeting body composition may help prevent chronic diseases in persons with excess weight, but randomized clinical trials evaluating lifestyle interventions have rarely reported effects on directly quantified body composition. OBJECTIVE To evaluate the effects of a lifestyle weight-loss intervention on changes in overall and regional body composition. DESIGN, SETTING, AND PARTICIPANTS The ongoing Prevención con Dieta Mediterránea-Plus (PREDIMED-Plus) randomized clinical trial is designed to test the effect of the intervention on cardiovascular disease prevention after 8 years of follow-up. The trial is being conducted in 23 Spanish research centers and includes men and women (age 55-75 years) with body mass index between 27 and 40 and metabolic syndrome. The trial reported herein is an interim subgroup analysis of the intermediate outcome body composition after 3-year follow-up, and data analysis was conducted from February 1 to November 30, 2022. Of 6874 total PREDIMED-Plus participants, a subsample of 1521 individuals, coming from centers with access to a dual energy x-ray absorptiometry device, underwent body composition measurements at 3 time points. INTERVENTION Participants were randomly allocated to a multifactorial intervention based on an energy-reduced Mediterranean diet (MedDiet) and increased physical activity (PA) or to a control group based on usual care, with advice to follow an ad libitum MedDiet, but no physical activity promotion. MAIN OUTCOMES AND MEASURES The outcomes (continuous) were 3-year changes in total fat and lean mass (expressed as percentages of body mass) and visceral fat (in grams), tested using multivariable linear mixed-effects models. Clinical relevance of changes in body components (dichotomous) was assessed based on 5% or more improvements in baseline values, using logistic regression. Main analyses were performed in the evaluable population (completers only) and in sensitivity analyses, multiple imputation was performed to include data of participants lost to follow-up (intention-to-treat analyses). RESULTS A total of 1521 individuals were included (mean [SD] age, 65.3 [5.0] years; 52.1% men). In comparison with the control group (n=761), participants in the intervention arm (n=760) showed greater reductions in the percentage of total fat (between group differences after 1-year, −0.94% [95% CI, −1.19 to −0.69]; 3 years, −0.38% [95% CI, −0.64 to −0.12] and visceral fat storage after 1 year, -126 g [95% CI, −179 to −73.3 g]; 3 years, −70.4 g [95% CI, −126 to −15.2 g] and greater increases in the percentage of total lean mass at 1 year, 0.88% [95% CI, 0.63%-1.12%]; 3-years 0.34% [95%CI, 0.09%-0.60%]). The intervention group was more likely to show improvements of 5% or more in baseline body components (absolute risk reduction after 1 year, 13% for total fat mass, 11% for total lean mass, and 14% for visceral fat mass; after 3-years: 6% for total fat mass, 6% for total lean mass, and 8% for visceral fat mass). The number of participants needed to treat was between 12 and 17 to attain at least 1 individual with possibly clinically meaningful improvements in body composition. CONCLUSIONS AND RELEVANCE The findings of this trial suggest a weight-loss lifestyle intervention based on an energy-reduced MedDiet and physical activity significantly reduced total and visceral fat and attenuated age-related losses of lean mass in older adults with overweight or obesity and metabolic syndrome. Continued follow-up is warranted to confirm the long-term consequences of these changes on cardiovascular clinical end points.S

    VENUE: Virtualized Environment for Multi-UAV Network Emulation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have progressively been integrated into people lives during the last years. It is quite common now to see UAVs flying in the countryside doing field inspection, in highways for traffic control operations, or above stadiums in sport and music events. It is also common to see spectacular UAV swarm showcases (in most cases they are just performing a choreography) showing the potential of upcoming technologies. This article is focused on multi-UAV scenarios, on the establishment of Flying Ad hoc Networks (FANETs), and on the integration of 5G technologies like Network Function Virtualization (NFV) or Software Defined Networking (SDN). In particular, this article presents a proposal for one of the most common problems that the research and development community has to face at some stage: the validation of the different solutions and deployments. In this area, there is currently a notorious gap between the design phase and the deployment phase, since traditional network simulators are not designed with the constraints imposed by UAVs in mind. Besides, services implementations (that are usually distributed into single-board computers carried as payloads by UAVs) cannot be easily combined with the simulators. VENUE (Virtualized Environment for multi-UAV network emulation) is presented as an experimentation platform that allows testing the integration of multi-UAV FANETs together with network services deployments. VENUE covers from the simulation/emulation phase up to the real equipment integration phase. The validation of the platform is also presented in this article through several UAV use cases that make use of NFV technologies.This work was supported in part by the 5G-City Project under Grant TEC2016-76795-C6-3-R through the Spanish Ministry of Economy and Competitiveness, and in part by the H2020 5GRANGE Project under Grant 77713

    Transport-layer limitations for NFV orchestration in resource-constrained aerial networks

    Get PDF
    In this paper, we identify the main challenges and problems related with the management and orchestration of Virtualized Network Functions (VNFs) over aerial networks built with Small Unmanned Aerial Vehicles (SUAVs). Our analysis starts from a reference scenario, where several SUAVs are deployed over a delimited geographic area, and provide a mobile cloud environment that supports the deployment of functions and services using Network Functions Virtualization (NFV) technologies. After analyzing the main challenges to NFV orchestration in this reference scenario from a theoretical perspective, we undertake the study of one specific but relevant aspect following a practical perspective, i.e., the limitations of existing transport-layer solutions to support the dissemination of NFV management and orchestration information in the considered scenario. While in traditional cloud computing environments this traffic is delivered using TCP, our simulation results suggest that using this protocol over an aerial network of SUAVs presents certain limitations. Finally, based on the lessons learned from our practical analysis, the paper outlines different alternatives that could be followed to address these challenges.This article has been partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795- C6-3-R) funded by the Spanish Ministry of Economy and Competitiveness.Publicad
    corecore