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Abstract— Microservice platforms have brought many advantages to 
support the deployment of lightweight applications at both near the edge and 
datacenters. Still, their suitability to support telecommunication and vertical 
services beyond the network edge is far from being a reality. On the one hand, 
their flat networking approach does not support the establishment of link-
layer connectivity among the different components of telecommunication 
and vertical services (e.g., access points, routers, specific-purpose servers, 
etc.) due to their reliance on high-level APIs. On the other hand, their 
networking approach has not been designed to operate over ad-hoc networks 
built by the resource-constrained devices that may be available beyond the 
network edge. This can lead to suboptimal behaviours for the delivery of data 
traffic between microservices. This paper presents the results of a research 
collaboration between Universidad Carlos III of Madrid and Telefónica: 
L2S-M. Our solution provides  a programmable data plane that enables the 
establishment of on demand link layer connectivity between microservices on 
ad-hoc networks. This solution has the flexibility to execute different 
algorithms to build traffic paths between microservices, as well as to react 
against temporary link breakdowns, which could be present in these types of 
networks. The paper presents a proof of concept for a functional validation 
of L2S-M, using an aerial ad-hoc network deployed at 5TONIC laboratory 
in collaboration with Telefonica. The validation results showcase the proper 
operation  of L2S-M as a networking service for microservice platforms in 
ad-hoc networks, including its  ability to reconfigure the programmable data 
plane when link disruptions occur. 

 
 

 
Index Terms— Microservices, Containers, Ad-hoc networks, 

Software Defined Networking (SDN), Kubernetes 

I. INTRODUCTION 

Since the worldwide adoption of the Internet to provide digital 
services, developers and telecommunication operators have put 
significant effort into the deployment of better applications in 
both near edge networks and datacenters. However, this proved 
to be a difficult task using traditional monolithic applications 
due to their high costs in terms of development and 
maintenance: A single failure of one component would 
compromise the whole functionality of an application, 
introducing longer service cut-offs and recovery times. New 
architectural models had to be proposed to find solutions to 
mitigate these issues, leading to the design of microservice 
architectures.  
Microservices architectures allow splitting complex 
functionalities into smaller interconnected modules, which in 
turn saves development time and reduces the scope of the 
failures that may occur in production environments.  
 
 

For the last couple of years, many microservice platforms have 
been focusing on cloud environments, where high amounts of 
computational resources are available and connectivity through 
Gb/s links can be provided most of the time. Many networking 
solutions have been developed to communicate these 
microservices with this environment in mind, mostly consisting 
of implementing a flat full mesh where all microservices can 
communicate with each other. Using this model, networking is 
completely dissociated from the microservices themselves, 
allowing developers to focus on service functionalities without 
worrying about networking issues, since they can assume that 
communication will always be available.  
However, cloud environments are not the only areas that have 
benefited from increased attention over the last couple of years. 
Both industry and academia have seen distributed technologies, 
like aerial networks (i.e., networks composed of several 
Unmanned Aerial Vehicles – UAVs), as perfect candidates for 
service provisioning in the future.  
These networks have demonstrated their ability to deploy 
networking applications to deliver novel services that other 
technologies struggle to implement. However, the components 
that build these applications must establish communication 
through the IP or link layers, and current networking solutions 
for microservice platforms are not able to accurately implement 
this behaviour due to their reliance on high-level APIs. Instead, 
they leave all routing aspects to the underlying protocol running 
at the network, which might perform decisions that are not 
entirely beneficial for certain traffic types [1]. This approach 
limits the potential of microservice platforms as suitable 
candidates to deploy complex networking applications in 
distributed heterogeneous ad-hoc networks. 
This paper presents the technical results of a research 
collaboration  established between Universidad Carlos III de 
Madrid and Telefónica. This paper will introduce a novel 
solution to enable microservice connectivity over ad-hoc 
networks: L2S-M. Our solution is a networking service for 
microservice platforms able to build a programmable data plane 
that supports the establishment of link layer connectivity 
between microservices. This solution is specialised in ad-hoc 
networks with resource-constrained devices, although it can be 
used in other types of environments. The design of L2S-M 
leverages Software Defined Networking (SDN) technologies, 
this way supporting different routing algorithms to build data 
paths among microservices on wireless ad-hoc networks. Our 
solution has been validated in 5TONIC, i.e., the 5G Telefonica 
Open Network Innovation Centre (5TONIC), founded by 
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Telefónica, making use of a production cloud-environment and 
a wireless ad-hoc network infrastructure. 

II. RELATED WORK 

Telecommunication operators and developers have experienced 
an increment in user demand for faster and more efficient 
services. However, monolithic applications (i.e., all service 
components packed as a single unit) have proven to be 
insufficient to fulfil these demands due to their lesser degree of 
flexibility in terms of failure recovery and distribution [2]. In 
contrast, microservices have risen as one of the main 
alternatives to counter all its issues. By splitting applications 
into different modules under the principles of modularity, 
scalability, and resiliency [3], service providers can distribute 
complex applications over multiple machines and/or domains. 
Several well-known applications use this microservice 
architecture to supply millions of users each day, including 
Spotify, Twitter or Netflix [4]. 
The increase of popularity of this new architectural approach is 
a direct consequence of the adoption of virtualization 
techniques, in particular container technology, by both industry 
and academia. With containers, a host can allocate part of its 
own resources into a new “emulated” machine, which runs 
isolated from the original host. Containers differ from the 
traditional virtualisation paradigms because, instead of 
executing a full host Operative System (OS) into virtualized 
resources, some of its functionalities are relied into the host 
kernel instead, saving computational resources in the process 
[5].  
Thanks to its lightweight nature, containers are regarded as 
ideal platforms to host microservices. Nevertheless, since 
microservices will be deployed across multiple computational 
entities alongside a distributed infrastructure, it is essential to 
be able to manage their execution and establish their 
relationships to build a complex service.  
Due to their increasing popularity, there are multiple choices 
for container management in the commercial and open-source 
space, highlighting Docker Swarm [6], specialised in Docker 
containers; or OpenStack [7], one of the most recognized cloud 
solutions that support container development. Nevertheless, the 
most popular solution to manage containerised workloads is 
Kubernetes [8], thanks to its high degree of flexibility, 
simplicity, and constant support from a large community of 
developers. Research in container management shows that 
Kubernetes is regarded as the best performing solution in 
production environments [9]. Kubernetes has also been used as 
a template to build other advanced microservice platforms with 
enhanced functionalities, such as OpenShift [10] from RedHat, 
or other fully orchestrated microservice platform solutions like 
Amazon Elastic Container Service [11], which also defines the 
logic relation between all microservices used to build a complex 
application.  
As it has been previously mentioned, microservices must be 
interconnected among each other to provide a full working 
application. This fact has led to the creation of a set of 
specifications to manage networking resources for container-
based microservices: the Container Networking Interface 
(CNI). CNI consists of a specification and libraries to write 
plugins to configure network interfaces in Linux containers, 

allowing their interaction with physical interfaces [12]. In 
principle, this specification oversees the definition of how 
networking services must manage, enable, and attach 
networking interfaces into the container network space. This 
component is an agnostic element, compatible with multiple 
container runtimes and platforms.  
Since CNIs are only “templates” used to define networking 
configurations, developers must define their own approaches to 
apply these standards into their own solutions. CNI plugins are 
designed to perform all actions defined by the CNI 
specifications. Afterwards, each CNI plugin implementation 
must define how the rest of communications must be 
performed, i.e., how all the microservices present over an 
infrastructure will be able to communicate with each other. As 
an example, some CNI plugins establish virtual extensible 
LANs (VXLANs) among nodes of a microservice platform in 
order to guarantee IP level communications among 
microservices. 
Table 1 provides a comparison of the main CNI plugins used in 
the microservice management platforms. 

III. A NETWORKING SERVICE FOR AD-HOC NETWORKS 

A. Networking services in microservice platforms 
Traditional networking service solutions in microservice 
platforms have relied on a flat-networking approach where all 
microservices are able to reach each other and send information 
through high-level APIs (for example, RESTful APIs). This 
approach is optimal for applications whose information can be 
delivered at the application level, helping microservices to 
“forget” about the networking tasks and focus on providing 
their functionality to the system to build a more complex 
service. 
However, this approach is not suitable when communications 
cannot be established through the application layer, which is the 
case of networking functions used in telecommunication 
services. For example, a routing function must be connected 
with  other routing functions at the link layer (e.g., through 
point-to-point links) to properly route the incoming traffic to 
the corresponding destination.  
Table 1 depicts the most prominent networking services 
available for different microservice platforms. As it can be seen 
in the table, these solutions lack the tools to deal with wireless 
ad-hoc networks. 
B. Solution description 
Wireless ad-hoc networks have radically different 
characteristics compared to datacenter networks. Nodes use 
other peers as relays for establishing connectivity amongst all 
of them. In our vision, these networks will be deployed in 
scenarios where a wide variety of heterogeneous devices with 
different characteristics in terms of computational power and 
battery lifetime will be interconnected, building topologies for 
the provision of network functionalities such as Access Points, 
firewalls, etc. However, to allow these services to operate 
correctly, communication at the link-layer level is necessary. 
Traditional networking solutions in microservice platforms lack 
the necessary tools to enable this behaviour, leaving all the 
traffic delivery decisions to the underlying protocol running 
over the network.  



 Flannel Calico Kubenet Weavenet OpenShift 
SDN 

Linen L2S-M 

Developer/Owner CoreOS 
(Open-Source) 

Tigera (Open-
Source) 

Kubernetes 
(Open-Source) 

Weave Works  RedHat Open-Source Open-Source 
(UC3M + 
Telefónica) 

Does it require 
dependencies in 
each node? 

No, fully 
containerised 
solution 

No, fully 
containerised 
solution 

Linux libraries 
required 

No, fully 
containerised 
solution 

No, fully 
containerised 
solution 

Yes, OVS-
switches must 
be installed 
and active in 
every node. 

No, fully 
containerised 
solution 

Main CNI plugin. 
networking 
characteristics. 

Flat 
networking 
model using 
VXLANs 
between nodes.  
Does not 
implement 
further 
functionalities 

Provides full 
networking 
stack through 
overlay 
networking (IP 
tunneling).  
Flexible 
routing 
mechanisms 
and plugin 
selection. 
Implements 
network policy 
enforcement 

Simple flat 
networking 
approach. 
Connection 
between nodes 
left to cloud 
providers 

Builds overlay 
Layer 2 
network 
between 
containers and 
provides 
automatic 
discovery 
mechanisms 
through DNS 
and load 
balancing. 

Builds and 
overlay 
network using 
OVS switches 
in conjunction 
with SDN 
technology to 
provide 
project-level 
isolation. 

Level 3 
overlay 
networking 
(VXLAN) 
based on 
switching 
through OVS 
Switches.  
Allows the use 
of SDN 
Controllers to 
modify switch 
flows.  

Builds a 
programmable 
data plane to 
establish link 
layer 
connectivity 
between 
containers. 
Uses SDN 
technology to 
modify the 
data plane 
behaviour. 

Integration over 
microservice 
platforms 

Only 
compatible 
with 
Kubernetes 

Compatible 
with multiple 
platforms, 
including 
Kubernetes, 
OpenShift, 
Docker EE and 
OpenStack 

Only 
compatible 
with 
Kubernetes in 
Linux 
platforms 

Compatible 
with multiple 
Kubernetes 
distributions 
(Kubernetes, 
Amazon 
ESC…) and 
microservice 
platforms such 
as Mesos or 
Marathon. 

Designed for 
the OpenShift 
Container 
Platform 
(Kubernetes-
based). 

Only 
compatible 
with 
Kubernetes 

Compatible 
with the 
principal 
platforms 
(Kubernetes, 
Apache Mesos, 
Marathon, etc,) 

Supports point-to-
point links 
between 
containers? 

No No No Yes, but with 
limitations. 
Agents on 
every node are 
in charge of 
routing over a 
single Overlay 
Layer 2 
network. 

No, it can 
separate 
services but 
not establish 
point-to-point 
links between 
containers.  

No Yes 

Community 
support and 
expansion 

Widely 
extended due 
to its simplicity 
and 
effectiveness  

Widely 
extended 
solution in big 
production 
environments 
due to its high 
functionality 
and flexibility 

Generally used 
alongside a 
cloud provider 
or single node 
clusters, 
mostly for 
training 
purposes 

Widely 
extended in 
production 
environments 
for its 
functionalities 
and easy setup. 

Used in 
OpenShift 
installations, 
one of the most 
popular 
Kubernetes 
distributions. 

Very limited 
community 
adoption.  
Discontinued 
in late 2017 

Under 
development  

Table 1: Networking solutions for microservices comparison

This paper presents a networking service for microservice 
platforms with the objective of providing network connectivity 
as a service in ad-hoc networks: L2S-M. In principle, L2S-M 
will deliver a programmable data plane where any container in 
an ad-hoc network can be connected to any other one managed 
by the platform, regardless of its placement within the network. 
This programmable data plane will allow microservices to be 
connected at the  link layer, through point-to-point or multi-
access links, which can be created on demand. L2S-M will be 
able to apply traffic engineering mechanisms based on different 
metrics (e.g., energy consumption, traffic delay...) to select the 
best possible path. This in turn allows the networking service to 
build an appropriate data path between different services. More 
concretely, L2S-M will enable the creation of virtual networks 

on demand that microservices will be able to attach to. These 
virtual networks will provide link layer connectivity to 
microservices attached to them. This effectively supports the 
establishment of point-to-point or multi-access links among 
microservices. The isolation of particular services can be 
preserved by simply attaching their applications to specific 
virtual networks, enabling the secure operation  of 
microservices spread over the ad-hoc network infrastructure.  
To fulfil this objective, this service will take advantage of IP 
tunnelling mechanisms (e.g., VXLAN or GRE tunnels) to 
establish point-to-point links between neighboring nodes of the 
ad-hoc network. In this regard, the main component of the 
solution is the presence of programmable switches at each of 
the compute nodes of the ad-hoc network. Each one of these 



 
Figure 1: Kubernetes-based L2S-M design over an aerial ad-hoc network 

switches will be executed in a container to take advantage of 
the benefits of virtualisation technologies. The interconnection 
of neighboring switches is performed through IP tunnelling 
mechanisms. Using this method, a programmable switch 
infrastructure is built with the peers interconnected over the ad-
hoc network.  
In this solution, we introduce the Overlay Manager as an entity 
that will be always monitoring the ad-hoc network and modify 
the  topology of programmable switches, either dynamically 
(i.e., choosing different neighbours after a link breakdown) or 
manually. The combination of both technologies allows the 
networking service to build the programmable switch 
infrastructure between containers, regardless of their location in 
the ad-hoc network.  
To support the creation of  virtual networks over the 
programmable data plane offered by the link layer switches, 
L2S-M relies on a  Software-Defined Networking (SDN) 
controller. This SDN controller will interact with the switches 
to modify their traffic rules, specifying which ports must be 
used to forward traffic to other containers located across the 
network. Moreover, this element may react against unforeseen 
events related with intermittent connectivity, interacting with 
the data plane switches in such a way that the service downtime 
can be considerably reduced. This alternative improves “pure-
SDN''  approaches in two key ways. First, since L2S-M builds 
an overlay of point-to-point links between virtual switches, it 
allows the utilization of off-the-shelf SDN software 
implementations, which do not need to include specific 
developments to support wireless ad-hoc networks. Second, it 
provides the flexibility to use different routing algorithms to 

build data paths among microservices, with the configuration of 
proper forwarding rules at the switches. 
Figure 1 depicts the implementation of L2S-M as a Kubernetes 
CNI plugin over an aerial network composed of three UAVs 
and one Ground Control Station (GCS). It is relevant to mention 
that this service can be exported to 
other  microservice  platforms, since its functional entities and 
their relationships will be preserved in other solutions. 
To clarify the service functionality, the most relevant steps that 
will be executed by the networking service when attaching a 
new node are the following: 
1) Attachment of a node to the ad-hoc network infrastructure: 
Once a compute node is attached to an ad-hoc network 
infrastructure, the Kubernetes controller will send all the 
control information used by the Kubernetes Manager Module 
for its configuration. This module oversees the configuration of 
all the Kubernetes services, and it is also responsible for 
periodically communicating with the controller to update the 
resource status, lifetime checks, etc. Among its tasks, it will 
configure and instantiate the main container provided by the 
CNI plugin: the programmable Level 2 switch (CNI Pods in the 
figure UAVs). This switch container will only have a single 
interface used for external communications (Main CNI 
Interface).  
Meanwhile, the Overlay Manager module (embedded in the 
CNI Management at the controller) will instruct the nodes to 
build the IP tunnels with their neighbors, basing its decisions on 
the desired topology. This information will be sent as part of the 
Kubernetes management information. Once it arrives at the 
corresponding nodes, the CNI plugin will build the IP Tunnels 
using the chosen technology and attach the IP tunnel endpoints 



to the switches, finishing the data plane that containers will use 
to send its data to other peers, depicted in the figure by the 
tunnels. 
2) Deployment of a microservice: Using the same CNI plugin 
logic on each node, every new microservice container will be 
connected to the switch through a virtual interface generated by 
the CNI plugin module, creating the virtual link shown in red 
color in Figure 1.  
With the switch infrastructure built between the platform nodes, 
the SDN controller, which is also part of the CNI Management 
module, can start providing the programmability aspect to the 
data plane. The SDN Controller, assisted by an algorithm (that 
may take into account one, or several, network metrics such as 
hop distance or energy consumption), will send flow 
information to all the switches in the network, defining their 
forwarding rules and the ports they must use for every traffic 
flow. The switches communicate with this controller at special 
events, allowing the controller to react against connectivity 
related events to manage them accordingly. Like the Overlay 
Manager traffic, all this traffic will be included in the controller 
traffic sent by Kubernetes. 
3) Exchange of data traffic: The combination of all these 
components will allow containers to use the programmable data 
plane to communicate through link layer connectivity. Its 
sequence will be the following: data will be outputted from the 
virtual interface into the UAV 1 link layer switch, which will 
select the corresponding port to output its data based on the 
information provided by the SDN Controller. Afterwards, it 
will encapsulate this data and send it using the corresponding 
IP tunnel, forwarding its information through its main interface 
to reach the intermediate UAV (UAV2). As it can be seen in the 
figure, this node selects an intermediate UAV even though it 
has direct connectivity with the destination, an action that 
cannot be performed by other networking services since they 
use the underlying routing protocols (e.g., MANET protocols 
that select the shortest path). Once it reaches the other IP tunnel 
endpoint at UAV 2, the sequence is repeated until it reaches the 
destination link layer switch in UAV 3, which will forward the 
decapsulated data through its attached virtualized port, reaching 
the destination container.  
It is important to point out that control traffic (i.e., traffic 
exchanged between the Kubernetes controller and the UAVs) 
will not use the programmable data plane. Given  the reduced 
load of this traffic in comparison with data traffic [13], L2S-M 
relies on the underlying routing  protocol of the wireless ad-hoc 
network  to exchange this type of  traffic.  Therefore, the 
programmability aspects  are only provided for the data plane, 
whose traffic patterns can vary depending on multiple 
parameters like traffic class, application types, etc. This is 
especially useful in wireless ad-hoc networks, where strategies 
like the shortest-path might not be the most suitable for data 
plane communications (as we shown in our previous works in 
[1,13]) since, due to their intermittent connectivity, other paths 
might go through healthier peers that will maintain a more 
stable connection, which in turn can reduce service cutoffs). 
With the adoption of SDN technologies, L2S-M allows using 

different routing algorithms to create data paths over the ad hoc 
networks, so other strategies based on other metrics (e.g., a 
combination of shortest-path and energy consumption) can be 
used. 
C. The advantages of L2S-M 
This novel networking service approach for microservice 
platforms tackles several issues that most available plugins 
have not fully resolved. In these cases, they usually take the flat 
networking approach, which lacks the flexibility required in ad-
hoc environments where link disruptions between nodes are a 
common occurrence. In consequence, this leads to suboptimal 
traffic paths for microservices data traffic in ad-hoc networks 
since the networking service is not able to influence the traffic 
paths being used. Furthermore, some of these solutions are not 
entirely containerised, so they do not benefit from the 
advantages of container technology. 
In contrast, L2S-M allows the provision of network 
connectivity as a service by deploying a completely 
programmable data plane where containers can be directly 
reached using link layer connectivity. Thanks to the 
introduction of SDN technology, it will be able to influence 
networking paths through a variety of algorithms, as well as 
allowing the service to react in advance to changes performed 
in the network to select the most appropriate paths to distribute 
data plane information without tempering with their network 
layer configuration, including its upper layers. Some examples 
of algorithms that could be used by L2S-M are metric-based 
algorithms (such as the one used in BABEL protocol 
specialized in mobility), reactive algorithms (used in AODV), 
or geographic-based algorithms [14]. This solution allows the 
implementation of different traffic engineering features by 
creating link layer networks and attaching microservices to the 
appropriate ones, isolating them from the rest. This can be 
useful to adapt the platform to the needs of a particular service 
(for example, a temporary increase of user demand) or the 
prioritisation of services with more strict requirements (e.g., 
emergency services).  
Table 1 compares the most popular CNI Plugin solutions 
available now for the Kubernetes platform against the proposed 
solution. As it can be seen in the table, L2S-M’s strengths 
highlight its potential as a viable networking service for ad-hoc 
networks against other networking service solutions in 
microservice platforms. 

IV. PROOF OF CONCEPT AND VALIDATION 

A. Building the proof of concept 
This proof of concept was performed in the 5G Telefonica Open 
Network Innovation Centre (5TONIC), created by Telefónica 
in Madrid, as an experimental telecommunications facility 
focused on 5G technologies.  
This proof of concept uses part of the scenario depicted in Fig. 
1: we use two of the aircrafts, UAV 1 and UAV 3, as compute 
nodes of the network, as well as the GCS. We consider that the 
UAVs remain hoovering (static position) in direct line of sight 



 
Figure 2: Average Throughput and Jitter comparison for traffic between UAV 1 and UAV 3 for each networking solution against L2S-M

with each other, building the fixed network topology depicted 
in the figure. 
We have used two Parrot Beebop UAVs onboarding a single 
board computer (RPi Model 4 with 4 Gb of RAM for UAV 1 
and RPi Model 3B with 2 Gb of RAM for UAV 3). In a realistic 
scenario, these aircrafts would be directly under the control of 
a terrestrial GCS. In this case, we assume that the GCS also 
provides a terrestrial compute node through a Mini ITx with 
8GB of RAM and 8 CPUs (Ubuntu 20.04 amd64). All aircrafts 
use a single wireless interface to establish an ad-hoc network 
through Wi-Fi technology, particularly in the 2,4 GHz band 
over channel 7, set up in close proximity to each other. The GCS 
compute node uses an ASUS USB-N10 wireless adapter for 
wireless communications.  
Over the deployed ad-hoc network, a Kubernetes platform was 
deployed using Kubeadm (version 1.21) with Docker 20.10.6 
as its container runtime. Moreover, the Flannel CNI Plugin 
hasbeen chosen as the networking solution for the cluster to 
provide external connectivity and distribute control plane data 
to the containers (in Kubernetes terms, pods) deployed in the 
worker nodes (Kubernetes term for compute nodes).  
To build the programmable data plane presented in Section III, 
we deployed one instance of  Open vSwitch (OVS) on each 
worker of the Kubernetes cluster in a Kubernetes pod, taking 
advantage of the container technology to simplify its 
deployment, set-up and failure recovery. 
For the connection between containers and switches, the Multus 
CNI Plugin was used. This plugin allows the additional creation 
of virtual interfaces inside pods and their attachment to other 
network resources. In this case, it will create a virtual ethernet 
(Veth) interface, which acts as a traditional ethernet cable inside 
the host. This interface allows the pods to connect to the switch. 
The interconnection of switches for the exchange of data plane 
traffic through IP Tunnels is already performed beforehand 

using Linux native VXLAN tunnels, since this proof of concept 
does not feature an overlay manager yet. 
Finally, a RYU SDN controller (version 4.3) was installed in 
the Kubernetes controller node to modify the behaviour of the 
switches. By default, the switches do not have any kind of 
forwarding rules enabled (i.e., they act as traditional switches). 
Therefore, the SDN controller will run one of its default 
application that uses a simple Spanning Tree Protocol (STP) to 
module the links established through the VXLAN tunnels, 
avoiding potential loops in the network as well as providing 
mechanisms to counteract a link breakdown between the 
aircrafts, applying the shortest-distance strategy to deliver 
traffic in the network (although any protocol/strategy could be 
used, we selected this method to ensure the proper traffic 
delivery to the nodes) and ensuring that the network can find 
another path once a link is down. 
B. Functional validation 
To establish the viability of the solution, we performed several 
measurements to detect noticeable variations in terms of 
bandwidth consumption between one standard Kubernetes 
networking solution (Flannel) and our proposed design. In a 
previous work [15] we addressed the potential limitations that 
Flannel could have to provide direct connectivity between 
microservices. In this previous work, we created VXLAN 
interfaces in the pods establishing direct link layer connectivity 
on top of Flannel’s IP connectivity. This forces the use of nested 
VXLANs, as Flannel uses VXLAN IP Tunneling for delivering 
the information between nodes. Due to its link layer approach, 
we included this model (double VXLAN) in our comparison. 
For the validation, two batteries of tests were performed for the 
following networking approaches: pure-Flannel, Flannel with 
additional VXLANs and L2S-M. To test the impact of each 
solution with respect to the direct connectivity between nodes, 
we also included a vanilla approach in the comparisons. These  



 
Figure 3:  Throughput evolution during a link disruption over the network

tests were performed from UAV 1 to UAV 3 using the iperf3 
traffic generation tool. In the case of vanilla, we directly used 
the hosts themselves to run the iperf application, while in the 
virtualisation solutions we used K8s pods instead. Two types of 
tests were used to obtain different measurements: 

• Transmit a TCP flow at the maximum possible 
available rate to measure the average available 
bandwidth in Mb/s.  

• Transmit a UDP flow of 5Mb/s to determine the 
average jitter in ms. In these tests, background UDP 
traffic was introduced to emulate incoming traffic (0 
Mb/s, 5 Mb/s, 30 Mb/s and 60 Mb/s), using the same 
traffic solution for each one of the networking 
alternatives we compared. In other words, we 
generated background traffic at the client pod (host in 
the vanilla case) and sent it using the same networking 
solution used to send the 5 Mb/s flow (vanilla for the 
vanilla case, Flannel for the Flannel case, etc.). 

All tests were performed for 60 seconds, repeated 20 times in a 
row. All measurements were performed in the laboratory 
premises offered by 5TONIC. The results for each test can be 
seen in Figure 2. 
As it can be appreciated, our solution provides higher 
throughput measurements in comparison to the rest of the 
networking solutions, achieving the closest performance to the 
vanilla approach (i.e., without any virtualization solution). 
Regarding the observed jitter, all the solutions achieve similar 
values to the vanilla approach  (with minor differences of 
maximum 0.3 milliseconds) According to these tests, L2S-M 
does not significantly impact  the jitter metrics of the traffic 
flows,  increasing  performance in terms of throughput 
compared to the Flannel and the double VXLAN approaches. 
Finally, in order to verify that our solution has the capacity to 
react against link failures, we emulated a link breakdown 

between UAV 1 and UAV 3 while a 5Mb/s data flow was being 
transmitted between the pods located at the aircrafts. In this 
case, we tear down the link due to a transient error over the link, 
lasting 180 seconds until the link is brought up again. 
Therefore, we force its traffic to go through the GCS once the 
link is down, checking that the SDN controller can properly 
react to this breakdown to deliver the traffic between workers. 
As it has been mentioned before, the RYU controller uses a 
simple STP algorithm to avoid loops in the network, so it will 
force the switches to build a new path through STP after the 
direct link has been turned offline.  
In Figure 3, the provision of a video-streaming service with a 
5Mb/s flow, cutting the direct link between the aircrafts after 
180 seconds can be appreciated. As it can be spotted in the 
graph, after 30 s where the protocol is finding the new route, 
communication is re-established. 180 seconds after the failure, 
the link between the aircrafts is up again, in turn triggering the 
SDN controller to force the switches to run the STP again, 
which after a while the system recovers as it was initially 
shown. It is important to point out that these 30s could be 
significantly reduced in realistic scenarios by using more 
refined algorithms and/or other specific protocols, but this 
simple algorithm allows us to verify the capacity of our system 
to recover from sudden disruptions. It is relevant to point out 
that our system has the flexibility to execute different 
algorithms to recompute traffic paths dynamically for a variety 
of purposes, not only to react against unexpected 
disconnections.   

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented L2S-M, a solution that offers 
link layer connectivity as a service to container interfaces 
managed by microservice platforms. It fulfils this objective by 
building a programmable data plane where microservices can 
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establish Link layer connectivity with any other container. This 
networking solution can use a wide variety of algorithms to 
rebuild the traffic paths on demand in the programmable data 
plane to obey different necessities (isolation, traffic 
engineering, etc.) or react against sudden changes in the ad-hoc 
network.  
This approach can potentially improve microservice 
connectivity for ad-hoc networks in comparison to other 
available networking services, as it can be seen in the first 
validation performed in the paper at the 5TONIC laboratories 
in collaboration with Telefónica.  
Our future work will include the full realisation of the view 
presented in this paper by developing the networking service, 
as well as testing its implementation and performance over 
realistic scenarios of aerial ad-hoc networks. These scenarios 
will consider the utilization of different routing algorithms to 
create data paths among microservices over wireless ad-hoc 
networks. 
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