
This is a postprint version of the following published document:

Gonzalez, L. F., Vidal, I., Valera, F. & Lopez, D. R.
(2022). Link Layer Connectivity as a Service for Ad-
Hoc Microservice Platforms. IEEE Network, 36(1),
10-17.

DOI: 10.1109/mnet.001.2100363

 © 2022 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://doi.org/10.1109/mnet.001.2100363

Abstract— Microservice platforms have brought many advantages to
support the deployment of lightweight applications at both near the edge and
datacenters. Still, their suitability to support telecommunication and vertical
services beyond the network edge is far from being a reality. On the one hand,
their flat networking approach does not support the establishment of link-
layer connectivity among the different components of telecommunication
and vertical services (e.g., access points, routers, specific-purpose servers,
etc.) due to their reliance on high-level APIs. On the other hand, their
networking approach has not been designed to operate over ad-hoc networks
built by the resource-constrained devices that may be available beyond the
network edge. This can lead to suboptimal behaviours for the delivery of data
traffic between microservices. This paper presents the results of a research
collaboration between Universidad Carlos III of Madrid and Telefónica:
L2S-M. Our solution provides a programmable data plane that enables the
establishment of on demand link layer connectivity between microservices on
ad-hoc networks. This solution has the flexibility to execute different
algorithms to build traffic paths between microservices, as well as to react
against temporary link breakdowns, which could be present in these types of
networks. The paper presents a proof of concept for a functional validation
of L2S-M, using an aerial ad-hoc network deployed at 5TONIC laboratory
in collaboration with Telefonica. The validation results showcase the proper
operation of L2S-M as a networking service for microservice platforms in
ad-hoc networks, including its ability to reconfigure the programmable data
plane when link disruptions occur.

Index Terms— Microservices, Containers, Ad-hoc networks,

Software Defined Networking (SDN), Kubernetes

I. INTRODUCTION

Since the worldwide adoption of the Internet to provide digital
services, developers and telecommunication operators have put
significant effort into the deployment of better applications in
both near edge networks and datacenters. However, this proved
to be a difficult task using traditional monolithic applications
due to their high costs in terms of development and
maintenance: A single failure of one component would
compromise the whole functionality of an application,
introducing longer service cut-offs and recovery times. New
architectural models had to be proposed to find solutions to
mitigate these issues, leading to the design of microservice
architectures.
Microservices architectures allow splitting complex
functionalities into smaller interconnected modules, which in
turn saves development time and reduces the scope of the
failures that may occur in production environments.

For the last couple of years, many microservice platforms have
been focusing on cloud environments, where high amounts of
computational resources are available and connectivity through
Gb/s links can be provided most of the time. Many networking
solutions have been developed to communicate these
microservices with this environment in mind, mostly consisting
of implementing a flat full mesh where all microservices can
communicate with each other. Using this model, networking is
completely dissociated from the microservices themselves,
allowing developers to focus on service functionalities without
worrying about networking issues, since they can assume that
communication will always be available.
However, cloud environments are not the only areas that have
benefited from increased attention over the last couple of years.
Both industry and academia have seen distributed technologies,
like aerial networks (i.e., networks composed of several
Unmanned Aerial Vehicles – UAVs), as perfect candidates for
service provisioning in the future.
These networks have demonstrated their ability to deploy
networking applications to deliver novel services that other
technologies struggle to implement. However, the components
that build these applications must establish communication
through the IP or link layers, and current networking solutions
for microservice platforms are not able to accurately implement
this behaviour due to their reliance on high-level APIs. Instead,
they leave all routing aspects to the underlying protocol running
at the network, which might perform decisions that are not
entirely beneficial for certain traffic types [1]. This approach
limits the potential of microservice platforms as suitable
candidates to deploy complex networking applications in
distributed heterogeneous ad-hoc networks.
This paper presents the technical results of a research
collaboration established between Universidad Carlos III de
Madrid and Telefónica. This paper will introduce a novel
solution to enable microservice connectivity over ad-hoc
networks: L2S-M. Our solution is a networking service for
microservice platforms able to build a programmable data plane
that supports the establishment of link layer connectivity
between microservices. This solution is specialised in ad-hoc
networks with resource-constrained devices, although it can be
used in other types of environments. The design of L2S-M
leverages Software Defined Networking (SDN) technologies,
this way supporting different routing algorithms to build data
paths among microservices on wireless ad-hoc networks. Our
solution has been validated in 5TONIC, i.e., the 5G Telefonica
Open Network Innovation Centre (5TONIC), founded by

Link layer Connectivity as a Service for Ad-hoc Microservice Platforms

Luis F. Gonzalez1, Ivan Vidal1, Francisco Valera1, and Diego R. Lopez2

1 Universidad Carlos III de Madrid, Av. Universidad, 30, 28911, Leganés (Madrid), Spain
2 Telefónica I+D, C/ Zurbarán 12, 28010 Madrid, Spain

Telefónica, making use of a production cloud-environment and
a wireless ad-hoc network infrastructure.

II. RELATED WORK

Telecommunication operators and developers have experienced
an increment in user demand for faster and more efficient
services. However, monolithic applications (i.e., all service
components packed as a single unit) have proven to be
insufficient to fulfil these demands due to their lesser degree of
flexibility in terms of failure recovery and distribution [2]. In
contrast, microservices have risen as one of the main
alternatives to counter all its issues. By splitting applications
into different modules under the principles of modularity,
scalability, and resiliency [3], service providers can distribute
complex applications over multiple machines and/or domains.
Several well-known applications use this microservice
architecture to supply millions of users each day, including
Spotify, Twitter or Netflix [4].
The increase of popularity of this new architectural approach is
a direct consequence of the adoption of virtualization
techniques, in particular container technology, by both industry
and academia. With containers, a host can allocate part of its
own resources into a new “emulated” machine, which runs
isolated from the original host. Containers differ from the
traditional virtualisation paradigms because, instead of
executing a full host Operative System (OS) into virtualized
resources, some of its functionalities are relied into the host
kernel instead, saving computational resources in the process
[5].
Thanks to its lightweight nature, containers are regarded as
ideal platforms to host microservices. Nevertheless, since
microservices will be deployed across multiple computational
entities alongside a distributed infrastructure, it is essential to
be able to manage their execution and establish their
relationships to build a complex service.
Due to their increasing popularity, there are multiple choices
for container management in the commercial and open-source
space, highlighting Docker Swarm [6], specialised in Docker
containers; or OpenStack [7], one of the most recognized cloud
solutions that support container development. Nevertheless, the
most popular solution to manage containerised workloads is
Kubernetes [8], thanks to its high degree of flexibility,
simplicity, and constant support from a large community of
developers. Research in container management shows that
Kubernetes is regarded as the best performing solution in
production environments [9]. Kubernetes has also been used as
a template to build other advanced microservice platforms with
enhanced functionalities, such as OpenShift [10] from RedHat,
or other fully orchestrated microservice platform solutions like
Amazon Elastic Container Service [11], which also defines the
logic relation between all microservices used to build a complex
application.
As it has been previously mentioned, microservices must be
interconnected among each other to provide a full working
application. This fact has led to the creation of a set of
specifications to manage networking resources for container-
based microservices: the Container Networking Interface
(CNI). CNI consists of a specification and libraries to write
plugins to configure network interfaces in Linux containers,

allowing their interaction with physical interfaces [12]. In
principle, this specification oversees the definition of how
networking services must manage, enable, and attach
networking interfaces into the container network space. This
component is an agnostic element, compatible with multiple
container runtimes and platforms.
Since CNIs are only “templates” used to define networking
configurations, developers must define their own approaches to
apply these standards into their own solutions. CNI plugins are
designed to perform all actions defined by the CNI
specifications. Afterwards, each CNI plugin implementation
must define how the rest of communications must be
performed, i.e., how all the microservices present over an
infrastructure will be able to communicate with each other. As
an example, some CNI plugins establish virtual extensible
LANs (VXLANs) among nodes of a microservice platform in
order to guarantee IP level communications among
microservices.
Table 1 provides a comparison of the main CNI plugins used in
the microservice management platforms.

III. A NETWORKING SERVICE FOR AD-HOC NETWORKS

A. Networking services in microservice platforms
Traditional networking service solutions in microservice
platforms have relied on a flat-networking approach where all
microservices are able to reach each other and send information
through high-level APIs (for example, RESTful APIs). This
approach is optimal for applications whose information can be
delivered at the application level, helping microservices to
“forget” about the networking tasks and focus on providing
their functionality to the system to build a more complex
service.
However, this approach is not suitable when communications
cannot be established through the application layer, which is the
case of networking functions used in telecommunication
services. For example, a routing function must be connected
with other routing functions at the link layer (e.g., through
point-to-point links) to properly route the incoming traffic to
the corresponding destination.
Table 1 depicts the most prominent networking services
available for different microservice platforms. As it can be seen
in the table, these solutions lack the tools to deal with wireless
ad-hoc networks.
B. Solution description
Wireless ad-hoc networks have radically different
characteristics compared to datacenter networks. Nodes use
other peers as relays for establishing connectivity amongst all
of them. In our vision, these networks will be deployed in
scenarios where a wide variety of heterogeneous devices with
different characteristics in terms of computational power and
battery lifetime will be interconnected, building topologies for
the provision of network functionalities such as Access Points,
firewalls, etc. However, to allow these services to operate
correctly, communication at the link-layer level is necessary.
Traditional networking solutions in microservice platforms lack
the necessary tools to enable this behaviour, leaving all the
traffic delivery decisions to the underlying protocol running
over the network.

 Flannel Calico Kubenet Weavenet OpenShift
SDN

Linen L2S-M

Developer/Owner CoreOS
(Open-Source)

Tigera (Open-
Source)

Kubernetes
(Open-Source)

Weave Works RedHat Open-Source Open-Source
(UC3M +
Telefónica)

Does it require
dependencies in
each node?

No, fully
containerised
solution

No, fully
containerised
solution

Linux libraries
required

No, fully
containerised
solution

No, fully
containerised
solution

Yes, OVS-
switches must
be installed
and active in
every node.

No, fully
containerised
solution

Main CNI plugin.
networking
characteristics.

Flat
networking
model using
VXLANs
between nodes.
Does not
implement
further
functionalities

Provides full
networking
stack through
overlay
networking (IP
tunneling).
Flexible
routing
mechanisms
and plugin
selection.
Implements
network policy
enforcement

Simple flat
networking
approach.
Connection
between nodes
left to cloud
providers

Builds overlay
Layer 2
network
between
containers and
provides
automatic
discovery
mechanisms
through DNS
and load
balancing.

Builds and
overlay
network using
OVS switches
in conjunction
with SDN
technology to
provide
project-level
isolation.

Level 3
overlay
networking
(VXLAN)
based on
switching
through OVS
Switches.
Allows the use
of SDN
Controllers to
modify switch
flows.

Builds a
programmable
data plane to
establish link
layer
connectivity
between
containers.
Uses SDN
technology to
modify the
data plane
behaviour.

Integration over
microservice
platforms

Only
compatible
with
Kubernetes

Compatible
with multiple
platforms,
including
Kubernetes,
OpenShift,
Docker EE and
OpenStack

Only
compatible
with
Kubernetes in
Linux
platforms

Compatible
with multiple
Kubernetes
distributions
(Kubernetes,
Amazon
ESC…) and
microservice
platforms such
as Mesos or
Marathon.

Designed for
the OpenShift
Container
Platform
(Kubernetes-
based).

Only
compatible
with
Kubernetes

Compatible
with the
principal
platforms
(Kubernetes,
Apache Mesos,
Marathon, etc,)

Supports point-to-
point links
between
containers?

No No No Yes, but with
limitations.
Agents on
every node are
in charge of
routing over a
single Overlay
Layer 2
network.

No, it can
separate
services but
not establish
point-to-point
links between
containers.

No Yes

Community
support and
expansion

Widely
extended due
to its simplicity
and
effectiveness

Widely
extended
solution in big
production
environments
due to its high
functionality
and flexibility

Generally used
alongside a
cloud provider
or single node
clusters,
mostly for
training
purposes

Widely
extended in
production
environments
for its
functionalities
and easy setup.

Used in
OpenShift
installations,
one of the most
popular
Kubernetes
distributions.

Very limited
community
adoption.
Discontinued
in late 2017

Under
development

Table 1: Networking solutions for microservices comparison

This paper presents a networking service for microservice
platforms with the objective of providing network connectivity
as a service in ad-hoc networks: L2S-M. In principle, L2S-M
will deliver a programmable data plane where any container in
an ad-hoc network can be connected to any other one managed
by the platform, regardless of its placement within the network.
This programmable data plane will allow microservices to be
connected at the link layer, through point-to-point or multi-
access links, which can be created on demand. L2S-M will be
able to apply traffic engineering mechanisms based on different
metrics (e.g., energy consumption, traffic delay...) to select the
best possible path. This in turn allows the networking service to
build an appropriate data path between different services. More
concretely, L2S-M will enable the creation of virtual networks

on demand that microservices will be able to attach to. These
virtual networks will provide link layer connectivity to
microservices attached to them. This effectively supports the
establishment of point-to-point or multi-access links among
microservices. The isolation of particular services can be
preserved by simply attaching their applications to specific
virtual networks, enabling the secure operation of
microservices spread over the ad-hoc network infrastructure.
To fulfil this objective, this service will take advantage of IP
tunnelling mechanisms (e.g., VXLAN or GRE tunnels) to
establish point-to-point links between neighboring nodes of the
ad-hoc network. In this regard, the main component of the
solution is the presence of programmable switches at each of
the compute nodes of the ad-hoc network. Each one of these

Figure 1: Kubernetes-based L2S-M design over an aerial ad-hoc network

switches will be executed in a container to take advantage of
the benefits of virtualisation technologies. The interconnection
of neighboring switches is performed through IP tunnelling
mechanisms. Using this method, a programmable switch
infrastructure is built with the peers interconnected over the ad-
hoc network.
In this solution, we introduce the Overlay Manager as an entity
that will be always monitoring the ad-hoc network and modify
the topology of programmable switches, either dynamically
(i.e., choosing different neighbours after a link breakdown) or
manually. The combination of both technologies allows the
networking service to build the programmable switch
infrastructure between containers, regardless of their location in
the ad-hoc network.
To support the creation of virtual networks over the
programmable data plane offered by the link layer switches,
L2S-M relies on a Software-Defined Networking (SDN)
controller. This SDN controller will interact with the switches
to modify their traffic rules, specifying which ports must be
used to forward traffic to other containers located across the
network. Moreover, this element may react against unforeseen
events related with intermittent connectivity, interacting with
the data plane switches in such a way that the service downtime
can be considerably reduced. This alternative improves “pure-
SDN'' approaches in two key ways. First, since L2S-M builds
an overlay of point-to-point links between virtual switches, it
allows the utilization of off-the-shelf SDN software
implementations, which do not need to include specific
developments to support wireless ad-hoc networks. Second, it
provides the flexibility to use different routing algorithms to

build data paths among microservices, with the configuration of
proper forwarding rules at the switches.
Figure 1 depicts the implementation of L2S-M as a Kubernetes
CNI plugin over an aerial network composed of three UAVs
and one Ground Control Station (GCS). It is relevant to mention
that this service can be exported to
other microservice platforms, since its functional entities and
their relationships will be preserved in other solutions.
To clarify the service functionality, the most relevant steps that
will be executed by the networking service when attaching a
new node are the following:
1) Attachment of a node to the ad-hoc network infrastructure:
Once a compute node is attached to an ad-hoc network
infrastructure, the Kubernetes controller will send all the
control information used by the Kubernetes Manager Module
for its configuration. This module oversees the configuration of
all the Kubernetes services, and it is also responsible for
periodically communicating with the controller to update the
resource status, lifetime checks, etc. Among its tasks, it will
configure and instantiate the main container provided by the
CNI plugin: the programmable Level 2 switch (CNI Pods in the
figure UAVs). This switch container will only have a single
interface used for external communications (Main CNI
Interface).
Meanwhile, the Overlay Manager module (embedded in the
CNI Management at the controller) will instruct the nodes to
build the IP tunnels with their neighbors, basing its decisions on
the desired topology. This information will be sent as part of the
Kubernetes management information. Once it arrives at the
corresponding nodes, the CNI plugin will build the IP Tunnels
using the chosen technology and attach the IP tunnel endpoints

to the switches, finishing the data plane that containers will use
to send its data to other peers, depicted in the figure by the
tunnels.
2) Deployment of a microservice: Using the same CNI plugin
logic on each node, every new microservice container will be
connected to the switch through a virtual interface generated by
the CNI plugin module, creating the virtual link shown in red
color in Figure 1.
With the switch infrastructure built between the platform nodes,
the SDN controller, which is also part of the CNI Management
module, can start providing the programmability aspect to the
data plane. The SDN Controller, assisted by an algorithm (that
may take into account one, or several, network metrics such as
hop distance or energy consumption), will send flow
information to all the switches in the network, defining their
forwarding rules and the ports they must use for every traffic
flow. The switches communicate with this controller at special
events, allowing the controller to react against connectivity
related events to manage them accordingly. Like the Overlay
Manager traffic, all this traffic will be included in the controller
traffic sent by Kubernetes.
3) Exchange of data traffic: The combination of all these
components will allow containers to use the programmable data
plane to communicate through link layer connectivity. Its
sequence will be the following: data will be outputted from the
virtual interface into the UAV 1 link layer switch, which will
select the corresponding port to output its data based on the
information provided by the SDN Controller. Afterwards, it
will encapsulate this data and send it using the corresponding
IP tunnel, forwarding its information through its main interface
to reach the intermediate UAV (UAV2). As it can be seen in the
figure, this node selects an intermediate UAV even though it
has direct connectivity with the destination, an action that
cannot be performed by other networking services since they
use the underlying routing protocols (e.g., MANET protocols
that select the shortest path). Once it reaches the other IP tunnel
endpoint at UAV 2, the sequence is repeated until it reaches the
destination link layer switch in UAV 3, which will forward the
decapsulated data through its attached virtualized port, reaching
the destination container.
It is important to point out that control traffic (i.e., traffic
exchanged between the Kubernetes controller and the UAVs)
will not use the programmable data plane. Given the reduced
load of this traffic in comparison with data traffic [13], L2S-M
relies on the underlying routing protocol of the wireless ad-hoc
network to exchange this type of traffic. Therefore, the
programmability aspects are only provided for the data plane,
whose traffic patterns can vary depending on multiple
parameters like traffic class, application types, etc. This is
especially useful in wireless ad-hoc networks, where strategies
like the shortest-path might not be the most suitable for data
plane communications (as we shown in our previous works in
[1,13]) since, due to their intermittent connectivity, other paths
might go through healthier peers that will maintain a more
stable connection, which in turn can reduce service cutoffs).
With the adoption of SDN technologies, L2S-M allows using

different routing algorithms to create data paths over the ad hoc
networks, so other strategies based on other metrics (e.g., a
combination of shortest-path and energy consumption) can be
used.
C. The advantages of L2S-M
This novel networking service approach for microservice
platforms tackles several issues that most available plugins
have not fully resolved. In these cases, they usually take the flat
networking approach, which lacks the flexibility required in ad-
hoc environments where link disruptions between nodes are a
common occurrence. In consequence, this leads to suboptimal
traffic paths for microservices data traffic in ad-hoc networks
since the networking service is not able to influence the traffic
paths being used. Furthermore, some of these solutions are not
entirely containerised, so they do not benefit from the
advantages of container technology.
In contrast, L2S-M allows the provision of network
connectivity as a service by deploying a completely
programmable data plane where containers can be directly
reached using link layer connectivity. Thanks to the
introduction of SDN technology, it will be able to influence
networking paths through a variety of algorithms, as well as
allowing the service to react in advance to changes performed
in the network to select the most appropriate paths to distribute
data plane information without tempering with their network
layer configuration, including its upper layers. Some examples
of algorithms that could be used by L2S-M are metric-based
algorithms (such as the one used in BABEL protocol
specialized in mobility), reactive algorithms (used in AODV),
or geographic-based algorithms [14]. This solution allows the
implementation of different traffic engineering features by
creating link layer networks and attaching microservices to the
appropriate ones, isolating them from the rest. This can be
useful to adapt the platform to the needs of a particular service
(for example, a temporary increase of user demand) or the
prioritisation of services with more strict requirements (e.g.,
emergency services).
Table 1 compares the most popular CNI Plugin solutions
available now for the Kubernetes platform against the proposed
solution. As it can be seen in the table, L2S-M’s strengths
highlight its potential as a viable networking service for ad-hoc
networks against other networking service solutions in
microservice platforms.

IV. PROOF OF CONCEPT AND VALIDATION

A. Building the proof of concept
This proof of concept was performed in the 5G Telefonica Open
Network Innovation Centre (5TONIC), created by Telefónica
in Madrid, as an experimental telecommunications facility
focused on 5G technologies.
This proof of concept uses part of the scenario depicted in Fig.
1: we use two of the aircrafts, UAV 1 and UAV 3, as compute
nodes of the network, as well as the GCS. We consider that the
UAVs remain hoovering (static position) in direct line of sight

Figure 2: Average Throughput and Jitter comparison for traffic between UAV 1 and UAV 3 for each networking solution against L2S-M

with each other, building the fixed network topology depicted
in the figure.
We have used two Parrot Beebop UAVs onboarding a single
board computer (RPi Model 4 with 4 Gb of RAM for UAV 1
and RPi Model 3B with 2 Gb of RAM for UAV 3). In a realistic
scenario, these aircrafts would be directly under the control of
a terrestrial GCS. In this case, we assume that the GCS also
provides a terrestrial compute node through a Mini ITx with
8GB of RAM and 8 CPUs (Ubuntu 20.04 amd64). All aircrafts
use a single wireless interface to establish an ad-hoc network
through Wi-Fi technology, particularly in the 2,4 GHz band
over channel 7, set up in close proximity to each other. The GCS
compute node uses an ASUS USB-N10 wireless adapter for
wireless communications.
Over the deployed ad-hoc network, a Kubernetes platform was
deployed using Kubeadm (version 1.21) with Docker 20.10.6
as its container runtime. Moreover, the Flannel CNI Plugin
hasbeen chosen as the networking solution for the cluster to
provide external connectivity and distribute control plane data
to the containers (in Kubernetes terms, pods) deployed in the
worker nodes (Kubernetes term for compute nodes).
To build the programmable data plane presented in Section III,
we deployed one instance of Open vSwitch (OVS) on each
worker of the Kubernetes cluster in a Kubernetes pod, taking
advantage of the container technology to simplify its
deployment, set-up and failure recovery.
For the connection between containers and switches, the Multus
CNI Plugin was used. This plugin allows the additional creation
of virtual interfaces inside pods and their attachment to other
network resources. In this case, it will create a virtual ethernet
(Veth) interface, which acts as a traditional ethernet cable inside
the host. This interface allows the pods to connect to the switch.
The interconnection of switches for the exchange of data plane
traffic through IP Tunnels is already performed beforehand

using Linux native VXLAN tunnels, since this proof of concept
does not feature an overlay manager yet.
Finally, a RYU SDN controller (version 4.3) was installed in
the Kubernetes controller node to modify the behaviour of the
switches. By default, the switches do not have any kind of
forwarding rules enabled (i.e., they act as traditional switches).
Therefore, the SDN controller will run one of its default
application that uses a simple Spanning Tree Protocol (STP) to
module the links established through the VXLAN tunnels,
avoiding potential loops in the network as well as providing
mechanisms to counteract a link breakdown between the
aircrafts, applying the shortest-distance strategy to deliver
traffic in the network (although any protocol/strategy could be
used, we selected this method to ensure the proper traffic
delivery to the nodes) and ensuring that the network can find
another path once a link is down.
B. Functional validation
To establish the viability of the solution, we performed several
measurements to detect noticeable variations in terms of
bandwidth consumption between one standard Kubernetes
networking solution (Flannel) and our proposed design. In a
previous work [15] we addressed the potential limitations that
Flannel could have to provide direct connectivity between
microservices. In this previous work, we created VXLAN
interfaces in the pods establishing direct link layer connectivity
on top of Flannel’s IP connectivity. This forces the use of nested
VXLANs, as Flannel uses VXLAN IP Tunneling for delivering
the information between nodes. Due to its link layer approach,
we included this model (double VXLAN) in our comparison.
For the validation, two batteries of tests were performed for the
following networking approaches: pure-Flannel, Flannel with
additional VXLANs and L2S-M. To test the impact of each
solution with respect to the direct connectivity between nodes,
we also included a vanilla approach in the comparisons. These

Figure 3: Throughput evolution during a link disruption over the network

tests were performed from UAV 1 to UAV 3 using the iperf3
traffic generation tool. In the case of vanilla, we directly used
the hosts themselves to run the iperf application, while in the
virtualisation solutions we used K8s pods instead. Two types of
tests were used to obtain different measurements:

• Transmit a TCP flow at the maximum possible
available rate to measure the average available
bandwidth in Mb/s.

• Transmit a UDP flow of 5Mb/s to determine the
average jitter in ms. In these tests, background UDP
traffic was introduced to emulate incoming traffic (0
Mb/s, 5 Mb/s, 30 Mb/s and 60 Mb/s), using the same
traffic solution for each one of the networking
alternatives we compared. In other words, we
generated background traffic at the client pod (host in
the vanilla case) and sent it using the same networking
solution used to send the 5 Mb/s flow (vanilla for the
vanilla case, Flannel for the Flannel case, etc.).

All tests were performed for 60 seconds, repeated 20 times in a
row. All measurements were performed in the laboratory
premises offered by 5TONIC. The results for each test can be
seen in Figure 2.
As it can be appreciated, our solution provides higher
throughput measurements in comparison to the rest of the
networking solutions, achieving the closest performance to the
vanilla approach (i.e., without any virtualization solution).
Regarding the observed jitter, all the solutions achieve similar
values to the vanilla approach (with minor differences of
maximum 0.3 milliseconds) According to these tests, L2S-M
does not significantly impact the jitter metrics of the traffic
flows, increasing performance in terms of throughput
compared to the Flannel and the double VXLAN approaches.
Finally, in order to verify that our solution has the capacity to
react against link failures, we emulated a link breakdown

between UAV 1 and UAV 3 while a 5Mb/s data flow was being
transmitted between the pods located at the aircrafts. In this
case, we tear down the link due to a transient error over the link,
lasting 180 seconds until the link is brought up again.
Therefore, we force its traffic to go through the GCS once the
link is down, checking that the SDN controller can properly
react to this breakdown to deliver the traffic between workers.
As it has been mentioned before, the RYU controller uses a
simple STP algorithm to avoid loops in the network, so it will
force the switches to build a new path through STP after the
direct link has been turned offline.
In Figure 3, the provision of a video-streaming service with a
5Mb/s flow, cutting the direct link between the aircrafts after
180 seconds can be appreciated. As it can be spotted in the
graph, after 30 s where the protocol is finding the new route,
communication is re-established. 180 seconds after the failure,
the link between the aircrafts is up again, in turn triggering the
SDN controller to force the switches to run the STP again,
which after a while the system recovers as it was initially
shown. It is important to point out that these 30s could be
significantly reduced in realistic scenarios by using more
refined algorithms and/or other specific protocols, but this
simple algorithm allows us to verify the capacity of our system
to recover from sudden disruptions. It is relevant to point out
that our system has the flexibility to execute different
algorithms to recompute traffic paths dynamically for a variety
of purposes, not only to react against unexpected
disconnections.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented L2S-M, a solution that offers
link layer connectivity as a service to container interfaces
managed by microservice platforms. It fulfils this objective by
building a programmable data plane where microservices can

0 50 100 150 200 250 300 350 400 450 500

Time (s)
0

0.5

1

1.5

2

2.5
Th

ro
ug

hp
ut

 (b
/s

)
107

Data received

Link teardown

establish Link layer connectivity with any other container. This
networking solution can use a wide variety of algorithms to
rebuild the traffic paths on demand in the programmable data
plane to obey different necessities (isolation, traffic
engineering, etc.) or react against sudden changes in the ad-hoc
network.
This approach can potentially improve microservice
connectivity for ad-hoc networks in comparison to other
available networking services, as it can be seen in the first
validation performed in the paper at the 5TONIC laboratories
in collaboration with Telefónica.
Our future work will include the full realisation of the view
presented in this paper by developing the networking service,
as well as testing its implementation and performance over
realistic scenarios of aerial ad-hoc networks. These scenarios
will consider the utilization of different routing algorithms to
create data paths among microservices over wireless ad-hoc
networks.

VI. ACKNOWLEDGMENTS

This article has been supported by the TRUE5G (PID2019-
108713RB681) project funded by the Spanish National
Research Agency (MCIN/AEI/10.13039/5011000110) and by
the H2020 FISHY Project (Grant agreement ID: 952644).

REFERENCES

[1] L. F. Gonzalez, I. Vidal, F. Valera, B. Nogales, V. Sanchez-
Aguero, and D. R. Lopez, “Transport-Layer Limitations for
NFV Orchestration in Resource-Constrained Aerial
Networks,” Sensors, Nov. 2019., vol. 19, no. 23, p. 5220, doi:
10.3390/s19235220
[2] F. Wan, X. Wu and Q. Zhang, "Chain-Oriented Load
Balancing in Microservice System," 2020 World Conference on
Computing and Communication Technologies (WCCCT),
2020, pp. 10-14, doi: 10.1109/WCCCT49810.2020.9169996.
[3] R. Petrasch, "Model-based engineering for microservice
architectures using Enterprise Integration Patterns for inter-
service communication," In 14th International Joint Conference
on Computer Science and Software Engineering, 2017, pp. 1-4,
doi: 10.1109/JCSSE.2017.8025912.
[4] “Adopting Microservices at Netflix: Lessons for
Architectural Design”. Accessed November 25, 2021. [Online]
https://www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/
[5] I. M. A. Jawarneh et al., "Container Orchestration Engines:
A Thorough Functional and Performance Comparison," ICC
2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1-6, doi:
10.1109/ICC.2019.8762053
[6] Docker Inc. “Swarm mode overview”. Accessed November
25, 2021 [Online]. https://docs.docker.com/engine/swarm/
[7] Open Infrastructure Foundation. “OpenStack: The most
widely deployed open source software in the world”. Accessed
November 25, 2021. [Online] https://www.openstack.org
[8] The Linux Foundation. “Kubernetes: Production-Grade
container orchestration”. Accessed November 25, 2021.
[Online] https://kubernetes.io

[9] David Bernstein. “Containers and cloud: From lxc to docker
to kubernetes.” IEEE Cloud Computing, September 2014, vol.
1(3), pp. 81-89, , doi: 10.1109/ICC.2019.8762053.
[10] Red Hat Inc. “Manufacturing at the edge with Red Hat
OpenShift”. Accessed November 25, 2021. [Online]
https://www.openshift.com
[11] Peter Dalbhanjan. “Overview of Deployment Options on
AWS”, Amazon Web Services Inc., 2015.
Accessed November 25, 2021. [Online]
https://d0.awsstatic.com/whitepapers/overview-of-
deployment-options-on-aws.pdf
[12] The Linux Foundation. “CNI: The Container Network
Interface”. Accessed November 25, 2021. [Online]
https://www.cni.dev
[13] L. F. Gonzalez, I. Vidal, F. Valera, V. Sanchez-Aguero, B.
Nogales and D. R. Lopez, "NFV orchestration on intermittently
available SUAV platforms: challenges and hurdles," IEEE
INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2019,
pp. 301-306, doi: 10.1109/INFCOMW.2019.8845040.
[14] L. Gupta, R. Jain and G. Vaszkun, "Survey of Important
Issues in UAV Communication Networks," in IEEE
Communications Surveys & Tutorials, November 2015, vol.
18, no. 2, pp. 1123-1152, doi: 10.1109/COMST.2015.2495297.
[15] L. F. Gonzalez, I. Vidal, F. Valera, V. Sanchez-Agüero. “A
Comparative Study of Virtual Infrastructure Management
Solutions for UAV Networks”. In Proceedings of the 7th ACM
Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications (DRONET), June 24, 2021, pp. 13-18, doi:
10.1145/3469259.3470486

BIOGRAPHIES

Luis F. Gonzalez is a Ph. D. candidate in Telematics
Engineering at UC3M. He has been involved in several
European and national research projects. His research interests
include Network Functions Virtualization (NFV), 5G
networking, and Unmanned aerial vehicles (UAVs), publishing
in various international conferences and journals.

Ivan Vidal received the Ph.D. in Telematics Engineering In
2008 from the University Carlos III of Madrid, where he
is currently working as visiting professor. His research interests
include 5G networks, Network Functions Virtualization (NFV),
Unmanned aerial vehicles (UAV), network security, and
multimedia networking.

Prof. Dr. Francisco Valera received the Telecommunication
Engineering degree in 1998 from the Technical University of
Madrid (UPM), and the Ph.D. in Telecommunications in 2002
from the Univ. Carlos III de Madrid (UC3M), where he is
currently a tenured associate professor and deputy head of the
Telematics Engineering Department

Dr Diego Lopez is a Senior Technology Expert in Telefonica
I+D, in charge of exploratory activities within the GCTIO
Unit. Diego is focused on applied research in network
infrastructures, specially on virtualization, data-driven
management, new architectures, and security. He chairs ETSI
ISG PDL and the NOC of ETSI ISG NFV.

