12 research outputs found

    Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance

    Get PDF
    Papers presented at 5th International Conference on Bio-based and Biodegradable Polymers (BIOPOL-2015)Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polymers pose a green alternative to fossil-fuel derived polymers, as they exhibit good biocompatibility, biodegradability and outstanding barrier performance compared to other biopolyesters. However, their excessive brittleness has not yet been overcome without compromising barrier performance. In this work, a native ester-based thermoplastic polyurethane (TPU) not stabilised against hydrolysis, has been thoroughly assessed for the first time as an additive in melt blends with PHBV. Phase segregation in scanning electron microscopy (SEM) confirmed the immiscibility of the two polymers, however a degree of interaction has been found. Wide-angle X-ray scattering and differential scanning calorimetry revealed no major effect of the TPU on the crystallinity of the PHBV phase. The onset and kinetics of thermal degradation was not altered by the presence of the TPU up to 50 wt% content. Blends with increasing TPU contents showed a gradual decrease in the modulus of elasticity and tensile strength, while a substantial increase in elongation at break has been found for contents of TPU above 20 wt%, which resulted an improvement in the overall toughness of the blends. The excellent barrier performance of the PHBV against water vapour and aroma compounds was shown to be unaffected by TPU loads of ≤30 wt%. Full decomposition of neat PHBV and PHBV/TPU blends below 50 wt% TPU content was achieved after 40 days according to biodisintegration standards (ISO 20200). The study puts forward the potential use of TPU to improve the mechanical performance of these natural biopolyesters without compromising the barrier properties or the biodisintegratibility of the melt blends.The authors wish to thank the European project ECOBIOCAP and the Ministry of Economy and Competitiveness under project MAT2012-38947-C02 for financial support. Jennifer Gonzalez-Ausejo gratefully acknowledges financial support under grant “Pla de promoció de la investigació en la Universitat Jaume I” Predoc/2012/32

    Toughness Enhancement of Commercial Poly (Hydroxybutyrate-co-Valerate) (PHBV) by Blending with a Thermoplastic Polyurethane (TPU)

    Get PDF
    Poly(hydroxyl butyrate-co-valerate) (PHBV) is a biopolymer synthesized by microorganisms that is fully biodegradable with improved thermal and tensile properties with respect to some commodity plastics. However, it presents an intrinsic brittleness that limits its potential application in replacing plastics in packaging applications. Films made of blends of PHBV with different contents of thermoplastic polyurethane (TPU) were prepared by single screw extruder and their fracture toughness behavior was assessed by means of the essential work of fracture (EWF) Method. As the crack propagation was not always stable, a partition method has been used to compare all formulations and to relate results with the morphology of the blends. Indeed, fully characterization of the different PHBV/TPU blends showed that PHBV was incompatible with TPU. The blends showed an improvement of the toughness fracture, finding a maximum with intermediate TPU contents.Financial support for this research from Ministerio de Economía y Competitivi dad (project AGL2015-63855-C2-2-R (MINECO/FEDER) and Pla de Promoció de la Investigació de la Universitat Jaume I (PREDOC/2012/32 and E-2015-22) is gratefully acknowledged

    Mejora de la termoconformabilidad del PHBV mediante mezclas biodegradables con poliuretano

    Get PDF
    Actas del Congreso publicadas por ed. Compobell. ISBN 978-84-942655-8-7Mezclas de poli (3-hidroxibutirato-co-3-hidroxivalerato) (PHBV) y poliuretano termoplástico (TPU) se obtuvieron mediante extrusión con el objetivo de mejorar la procesabilidad del PHBV. La morfología, las propiedades mecánicas y la termoconformabilidad del PHBV se han evaluado observándose un aumento en la elongación a rotura y una mejora en el termoconformado del PHBV.A number of samples of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and thermoplastic polyurethane (TPU) were obtained through extrusion, with the aim of improving the processability of PHBV. The relevant assessment of PHBV’s morphology, mechanic properties, and thermoformability has been carried out, observing an increase in elongation at break and an improvement in the thermoforming of PHBV.Ministerio de Economía y Competitividad (proyecto MAT2012-38947-C02-01), Generalitat Valenciana (GV/2014/123) y Pla de Promoció de la Investigació de la Universitat Jaume I (PREDOC/2012/32)

    Mejora de las propiedades mecánicas y compatibilidad de mezclas de PHBV/PLA con plastificantes comerciales de origen bio

    Get PDF
    Actas del Congreso publicadas por ed. Compobell. ISBN 978-84-942655-8-7Mezclas de poli (3-hidroxibutirato-co-3-hidroxivalerato) (PHBV) y ácido poliláctico (PLA) se prepararon con un plastificante comercial funcionalizado de origen bio. La morfología obtenida, así como las propiedades mecánicas y dinamo-mecánicas de probetas inyectadas se ha evaluado observándose una mejora en la compatibilidad del PHBV y el PLA y un aumento en la deformación a rotura en tracción.A number of samples of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were treated with a commercial funcionalised bio plasticiser. The relevant assessment was made on the morphology and both the mechanic and dynamo-mechanic properties obtained in the injected test tubes. An improvement in terms of compatibility between PHBV and PLA has been observed, as well as an increase in strain at break in tensile testing.Ministerio de Economía y Competitividad (proyecto MAT2012-38947-C02-01) y Pla de Promoció de la Investigació de la Universitat Jaume I (PREDOC / 2012/32

    Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/ Purifi ed Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions

    Get PDF
    Novel biodegradable composites based on poly(3-hydroxybutirate-co-3-hydroxyvalerate) (PHBV) and different contents of purifi ed alpha-cellulose fi bers (3, 10, 25 and 45%) were prepared by melt blending and characterized. The composites were characterized by scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS) experiments, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanic analysis (DMA) and Shore D hardness measurements. Disintegrability under composting conditions was studied according to the ISO 20200 standard. Morphological results showed that high dispersion of the fi bers was achieved during mixing. Good adhesion on the fi ber-matrix interface was also detected by SEM. The addition of low and medium cellulose contents did not result in lower thermal resistance with respect to the neat PHBV. A reinforcing effect of the cellulose fi bers was detected in all samples, this effect being more pronounced at high temperatures. The composting results show that the addition of the fi bers did not affect the disintegrability of the PHBV, and thus compostable “green” low-cost PHBV/cellulose composites can be obtained

    Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses

    Get PDF
    We experimentally demonstrate multi-beam high spatial resolution laser micromachining with femtosecond pulses. The effects of chromatic aberrations as well as pulse stretching on the material processed due to diffraction were significantly mitigated by using a suited dispersion compensated module (DCM). This permits to increase the area of processing in a factor 3 in comparison with a conventional setup. Specifically, 52 blind holes have been drilled simultaneously onto a stainless steel sample with a 30 fs laser pulse in a parallel processing configuration

    Assessing the thermoformability of poly(3-hydroxybutyrate-co-3- hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates

    Get PDF
    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a renewable alternative to conventional barrier packaging polymers due to its thermoplastic properties, biodegradability and gas barrier performance but its potential industrial applications are limited by its high price and difficult processability. A thorough study concerning the thermoforming ability of PHBV, and blends with poly(lactic acid) (PLA) incorporating three different diisocyanates as compatibilizers (hexamethylene diisocyanate, poly(hexamethylene) diisocyanate and 1,4-phenylene diisocyanate) is herein presented after component melt blending. A straightforward universal qualitative method is proposed to assess the thermoformability, based on a visual inspection of a thermoformed specimen and the ability to reproduce the mold shape, and the thermoforming window of the material. The results reveal a significant improvement in the thermoforming capacity and a widening of the thermoforming windows as the correct amounts of diisocyanates are incorporated. The barrier properties and the biodisintegrability of the blends was also studied, confirming a predictable slight decrease of the barrier performance when PLA is added, but without negatively affecting the disintegrability under composting conditions with respect to pristine PHBV

    Three-Dimensional Printed PLA and PLA/PHA Dumbbell-Shaped Specimens: Material Defects and Their Impact on Degradation Behavior

    Get PDF
    The use of (bio)degradable polymers, especially in medical applications, requires a proper understanding of their properties and behavior in various environments. Structural elements made of such polymers may be exposed to changing environmental conditions, which may cause defects. That is why it is so important to determine the effect of processing conditions on polymer properties and also their subsequent behavior during degradation. This paper presents original research on a specimen’s damage during 70 days of hydrolytic degradation. During a standard hydrolytic degradation study of polylactide and polylactide/polyhydroxyalkanoate dumbbell-shaped specimens obtained by 3D printing with two different processing build directions, exhibited unexpected shrinkage phenomena in the last degradation series, representing approximately 50% of the length of the specimens irrespective of the printing direction. Therefore, the continuation of previous ex-ante research of advanced polymer materials is presented to identify any possible defects before they arise and to minimize the potential failures of novel polymer products during their use and also during degradation. Studies on the impact of a specific processing method, i.e., processing parameters and conditions, on the properties expressed in molar mass and thermal properties changes of specimens obtained by three-dimensional printing from polyester-based filaments, and in particular on the occurrence of unexpected shrinkage phenomena after post-processing heat treatment, are presented

    Desarrollo y caracterización de formulaciones poliméricas biodegradables y termoconformables para envasado

    Get PDF
    Con el fin de contrarrestar las limitaciones técnicas del PHBV, en este trabajo de tesis, se han desarrollado nuevas formulaciones biodegradables por adición al PHBV de una segunda fase para modular su comportamiento. Las estrategias de mejora se han abordado desde una perspectiva de viabilidad técnica y de aplicabilidad sencilla en un entorno industrial.In order to counteract the PHBV technical limitations, in this thesis work, new biodegradable formulations have been developed by addition to PHBV of a second phase to modulate their behavior. The improvement strategies have been approached from a perspective of technical feasibility and simple applicability in an industrial environment

    Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends

    Full text link
    [EN] A study concerning the incorporation of sepiolite in blends of biopolyesters (PHBV/PLA) to obtain clay/polymer nanocomposites (CPN) was performed to improve the gas barrier performance of the final materials and achieve a well dispersed morphology by means of an increase in the melt viscosity during melt blending. The latter is relevant to increase the stability of the PHBV sheets during thermoforming. The samples were analyzed using scanning electron microscopy (SEM), wide angle X-ray diffraction (WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile tests at room and high temperatures, dynamo-mechanical thermal analysis in torsion mode (DMTA), oscillatory rheometry with a parallel plate setup, Vicat softening temperature system and oxygen barrier properties. The resulting Sepiolite/PHBV/PLA nanocomposites not only improved the compatibility between the biopolymers and reduced the oxygen permeability, but also improved the mechanical properties at room temperature, showing an increase in the elongation at break, as well as increasing the rigidity and stability of the CPN at higher temperatures, which could make them very attractive for uses in thermoforming applications for food packaging. POLYM. COMPOS., 40:E156-E168, 2019. (c) 2017 Society of Plastics EngineersContract grant sponsor: Ministerio de Economia y Competitividad; contract grant number: AGL2015-63855-C2-2-R; contract grant sponsor: Pla de Promocio de la Investigacio de la Universitat Jaume I; contract grant numbers: PREDOC/2012/32 and UJI-B2016-35.González-Ausejo, J.; Gámez-Pérez, J.; Balart, R.; Lagarón, JM.; Cabedo, L. (2019). Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites. 40(S1):E156-E168. https://doi.org/10.1002/pc.24538SE156E16840S1Matusik, J., Stodolak, E., & Bahranowski, K. (2011). Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Applied Clay Science, 51(1-2), 102-109. doi:10.1016/j.clay.2010.11.010Magalhães, N. F., Dahmouche, K., Lopes, G. K., & Andrade, C. T. (2013). Using an organically-modified montmorillonite to compatibilize a biodegradable blend. Applied Clay Science, 72, 1-8. doi:10.1016/j.clay.2012.12.008Botana, A., Mollo, M., Eisenberg, P., & Torres Sanchez, R. M. (2010). Effect of modified montmorillonite on biodegradable PHB nanocomposites. Applied Clay Science, 47(3-4), 263-270. doi:10.1016/j.clay.2009.11.001Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053Serafim, L. S., Lemos, P. C., Oliveira, R., & Reis, M. A. M. (2004). Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnology and Bioengineering, 87(2), 145-160. doi:10.1002/bit.20085Reis, M. A. M., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. M. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25(6), 377-385. doi:10.1007/s00449-003-0322-4REHM, B. H. A. (2003). Polyester synthases: natural catalysts for plastics. Biochemical Journal, 376(1), 15-33. doi:10.1042/bj20031254Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354Corre, Y.-M., Bruzaud, S., Audic, J.-L., & Grohens, Y. (2012). Morphology and functional properties of commercial polyhydroxyalkanoates: A comprehensive and comparative study. Polymer Testing, 31(2), 226-235. doi:10.1016/j.polymertesting.2011.11.002Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82Kunioka, M., Tamaki, A., & Doi, Y. (1989). Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 22(2), 694-697. doi:10.1021/ma00192a031Giménez, E., Lagarón, J. M., Cabedo, L., Gavara, R., & Saura, J. J. (2004). Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 91(6), 3851-3855. doi:10.1002/app.13584Giménez, E., Lagarón, J. M., Maspoch, M. L., Cabedo, L., & Saura, J. J. (2004). Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering & Science, 44(3), 598-608. doi:10.1002/pen.20054Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776Mofokeng, J. P., & Luyt, A. S. (2015). Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta, 613, 41-53. doi:10.1016/j.tca.2015.05.019Mofokeng, J. P., & Luyt, A. S. (2015). Morphology and thermal degradation studies of melt-mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO2as filler. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42138Zhao, H., Cui, Z., Wang, X., Turng, L.-S., & Peng, X. (2013). Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Composites Part B: Engineering, 51, 79-91. doi:10.1016/j.compositesb.2013.02.034Monfared, A., & Jalali-Arani, A. (2015). Morphology and rheology of (styrene-butadiene rubber/acrylonitrile-butadiene rubber) blends filled with organoclay: The effect of nanoparticle localization. Applied Clay Science, 108, 1-11. doi:10.1016/j.clay.2015.02.012Huitric, J., Ville, J., Médéric, P., Moan, M., & Aubry, T. (2009). Rheological, morphological and structural properties of PE/PA/nanoclay ternary blends: Effect of clay weight fraction. Journal of Rheology, 53(5), 1101-1119. doi:10.1122/1.3153551Bitinis, N., Fortunati, E., Verdejo, R., Armentano, I., Torre, L., Kenny, J. M., & López-Manchado, M. Á. (2014). Thermal and bio-disintegration properties of poly(lactic acid)/natural rubber/organoclay nanocomposites. Applied Clay Science, 93-94, 78-84. doi:10.1016/j.clay.2014.02.024Bouakaz, B. S., Pillin, I., Habi, A., & Grohens, Y. (2015). Synergy between fillers in organomontmorillonite/graphene–PLA nanocomposites. Applied Clay Science, 116-117, 69-77. doi:10.1016/j.clay.2015.08.017González-Ausejo, J., Sánchez-Safont, E., Gámez-Pérez, J., & Cabedo, L. (2015). On the use of tris(nonylphenyl) phosphite as a chain extender in melt-blended poly(hydroxybutyrate-co-hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42390Neppalli, R., Causin, V., Marega, C., Modesti, M., Adhikari, R., Scholtyssek, S., … Marigo, A. (2014). The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid). Applied Clay Science, 87, 278-284. doi:10.1016/j.clay.2013.11.029Wu, J., Zou, X., Jing, B., & Dai, W. (2014). Effect of sepiolite on the crystallization behavior of biodegradable poly(lactic acid) as an efficient nucleating agent. Polymer Engineering & Science, 55(5), 1104-1112. doi:10.1002/pen.23981Nuzzo, A., Bilotti, E., Peijs, T., Acierno, D., & Filippone, G. (2014). Nanoparticle-induced co-continuity in immiscible polymer blends – A comparative study on bio-based PLA-PA11 blends filled with organoclay, sepiolite, and carbon nanotubes. Polymer, 55(19), 4908-4919. doi:10.1016/j.polymer.2014.07.036M.D. Samper-Madrigal O. Fenollar F. Dominici R. Balart J.M. Kenny 50 863 872 2014J.B. Olivato J. Marini E. Pollet F. Yamashita M.V.E. Grossmann L. Avérous 118 250 2015H.E. Miltner N. Watzeels N.A. Gotzen A.L. Goffin E. Duquesne S. Benali B. Ruelle S. Peeterbroeck P. Dubois B. Goderis G. Van Assche H. Rahier B. Van Mele 53 1494 2012Brigatti, M. F., Galan, E., & Theng, B. K. G. (2006). Chapter 2 Structures and Mineralogy of Clay Minerals. Handbook of Clay Science, 19-86. doi:10.1016/s1572-4352(05)01002-0Moazeni, N., Mohamad, Z., & Dehbari, N. (2014). Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.41428Sabzi, M., Jiang, L., Atai, M., & Ghasemi, I. (2012). PLA/sepiolite and PLA/calcium carbonate nanocomposites: A comparison study. Journal of Applied Polymer Science, 129(4), 1734-1744. doi:10.1002/app.38866Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Ferreri, L. (2010). Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polymer Degradation and Stability, 95(10), 2049-2056. doi:10.1016/j.polymdegradstab.2010.07.004Liu, M., Pu, M., & Ma, H. (2012). Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Composites Science and Technology, 72(13), 1508-1514. doi:10.1016/j.compscitech.2012.05.017Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Nanocomposites of PLA/PP blends based on sepiolite. Polymer Bulletin, 67(9), 1991-2016. doi:10.1007/s00289-011-0616-7Nuñez, K., Rosales, C., Perera, R., Villarreal, N., & Pastor, J. M. (2011). Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polymer Engineering & Science, 52(5), 988-1004. doi:10.1002/pen.22168Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418iSanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous Chitosan−Sepiolite Nanocomposites. Chemistry of Materials, 18(6), 1602-1610. doi:10.1021/cm0523642Wang, B., Wan, T., & Zeng, W. (2011). Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. Journal of Applied Polymer Science, 121(2), 1032-1039. doi:10.1002/app.33717T.A. Osswald Polymer Processing Fundamentals, Hanser, Munich 1998Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3Van Dommelen, J. A. ., Brekelmans, W. A. ., & Baaijens, F. P. . (2003). Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 35(9), 845-863. doi:10.1016/s0167-6636(02)00307-1Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022Galan, E. (1996). Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31(4), 443-453. doi:10.1180/claymin.1996.031.4.01Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.3979
    corecore