22,464 research outputs found

    Generalized Galilean Algebras and Newtonian Gravity

    Get PDF
    The non-relativistic versions of the generalized Poincar\'{e} algebras and generalized AdSAdS-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by GBn\mathcal{G}\mathfrak{B}_{n} and GLn\mathcal{G}\mathfrak{L}_{_{n}} respectively. Using a generalized In\"{o}n\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The SS-expansion procedure allows us to find the GB5\mathcal{G}\mathfrak{B}_{_{5}} algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.Comment: 16 pages, no figures in 755 (2016) 433-43

    First-Principle Description of Correlation Effects in Layered Materials

    Get PDF
    We present a first-principles description of anisotropic materials characterized by having both weak (dispersion-like) and strong covalent bonds, based on the Adiabatic--Connection Fluctuation--Dissipation Theorem within Density Functional Theory. For hexagonal boron nitride the in-plane and out of plane bonding as well as vibrational dynamics are well described both at equilibrium and when the layers are pulled apart. Also bonding in covalent and ionic solids is described. The formalism allows to ping-down the deficiencies of common exchange-correlation functionals and provides insight towards the inclusion of dispersion interactions into the correlation functional.Comment: Accepted for publication in Physical Review Letter

    Directed transport as a mechanism for protein folding in vivo

    Full text link
    We propose a model for protein folding in vivo based on a Brownian-ratchet mechanism in the multidimensional energy landscape space. The device is able to produce directed transport taking advantage of the assumed intrinsic asymmetric properties of the proteins and employing the consumption of energy provided by an external source. Through such a directed transport phenomenon, the polypeptide finds the native state starting from any initial state in the energy landscape with great efficacy and robustness, even in the presence of different type of obstacles. This model solves Levinthal's paradox without requiring biased transition probabilities but at the expense of opening the system to an external field.Comment: 16 pages, 7 figure

    Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program II: Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu

    Full text link
    To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R∼R \sim\,115000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard Local Thermodinamyc Equilibrium (LTE) analysis using measured Equivalent Widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. We find that thick disk stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y when compared to the thin disk stars. We also discovered that the previously identified high-α\alpha metal-rich population is also enhanced in Cu, Zn, Nd and Eu with respect to the thin disk but presents Ba and Y abundances lower on average, following the trend of thick disk stars towards higher metallities and further supporting the different chemical composition of this population. The ratio of heavy-s to light-s elements of thin disk stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disk metallicities. However, the opposite trend found for thick disk stars suggests that intermediate-mass AGB stars played an important role in the enrichment of the gas from where these stars formed. Previous works in the literature also point to a possible primary production of light-s elements at low metallicities to explain this trend. Finally, we also find an enhancement of light-s elements in the thin disk at super solar metallicities which could be caused by the contribution of metal-rich AGB stars. (short version)Comment: 20 pages, 19 figures, accepted by A&

    Three carbon-enhanced metal-poor dwarf stars from the SDSS - Chemical abundances from CO^5BOLD 3D hydrodynamical model atmospheres

    Full text link
    The origin of carbon-enhanced metal-poor stars enriched with both s and r elements is highly debated. Detailed abundances of these types of stars are crucial to understand the nature of their progenitors. The aim of this investigation is to study in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital Sky Survey. Using high resolution VLT/UVES spectra (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We made use of CO^5BOLD 3D hydrodynamical model atmospheres in the analysis of the carbon, nitrogen and oxygen abundances. NLTE corrections for C I and O I lines were computed using the Kiel code. We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Radial-velocity variations have been observed in SDSS J1349-0229, providing evidence that it is a member of a binary system. The chemical composition of the three stars is generally compatible with mass transfer from an AGB companion. However, many details remain difficult to explain. Most notably of those are the abundance of Li at the level of the Spite plateau in SDSS J1036+1212 and the large over-abundance of the pure r-process element Eu in all three stars.Comment: 12 pages, 15 figures. Accepted for publication in A&

    Exploring Vortex Dynamics in the Presence of Dissipation: Analytical and Numerical Results

    Full text link
    In this paper, we systematically examine the stability and dynamics of vortices under the effect of a phenomenological dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic Bose-Einstein condensates. An advantage of this simplified model is that it enables an analytical prediction that can be compared directly (and favorably) to numerical results. We then extend considerations to a case of considerable recent experimental interest, namely that of a vortex dipole and observe good agreement between theory and numerical computations in both the stability properties (eigenvalues of the vortex dipole stationary states) and the dynamical evolution of such configurations.Comment: 12 pages, 5 figures, accepted by PR

    Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars

    Full text link
    We have studied the volatile-to-refractory abundance ratios to investigate their possible relation with the low-mass planetary formation. We present a fully differential chemical abundance analysis using high-quality HARPS and UVES spectra of 61 late F- and early G-type main-sequence stars, 29 are planet hosts and 32 are stars without detected planets. As the previous sample of solar analogs, these stars slightly hotter than the Sun also provide very accurate Galactic chemical abundance trends in the metallicity range −0.3<[Fe/H]<0.4-0.3<{\rm [Fe/H]}<0.4. Stars with and without planets show similar mean abundance ratios. Moreover, when removing the Galactic chemical evolution effects, these mean abundance ratios, Δ[X/Fe]SUN−STARS\Delta {\rm [X/Fe]_{SUN-STARS}}, versus condensation temperature tend to exhibit less steep trends with nearly null or slightly negative slopes. We have also analyzed a sub-sample of 26 metal-rich stars, 13 with and 13 without known planets and find the similar, although not equal, abundance pattern with negative slopes for both samples of stars with and without planets. Using stars at S/N ≥550\ge 550 provides equally steep abundance trends with negative slopes for both stars with and without planets. We revisit the sample of solar analogs to study the abundance patterns of these stars, in particular, 8 stars hosting super-Earth-like planets. Among these stars having very low-mass planets, only four of them reveal clear increasing abundance trends versus condensation temperature. Finally, we have compared these observed slopes with those predicted using a simple model which enables us to compute the mass of rocks which have formed terrestrial planets in each planetary system. We do not find any evidence supporting the conclusion that the volatile-to-refractory abundance ratio is related to the presence of rocky planets.Comment: Accepted for publication in A&
    • …
    corecore