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we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean
algebras type II. The S-expansion procedure allows us to find the G5 algebra from the Newton

Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the
nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version
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leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
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1. Introduction

In Refs. [2,3] it was shown that the S-expansion procedure al-
lows to construct Chern-Simons gravities in odd dimensions in-
variant under an algebra referred to as B, algebra and Born-
Infeld gravities in even dimensions [4-7] invariant under a certain
subalgebra of the B, algebra, leading to general relativity in a
certain limit. The B, algebras, which could be also called ‘gen-
eralized Poincaré algebras’, were constructed from AdS-algebra and
a particular semigroup denoted by SV = {1, }N*J, which is en-
dowed with the multiplication rule AgAg = Agypg if ¢ +B < N+1;
Aghpg = AN41 fa+B8>N+1.

In Ref. [8] it was shown that the so-called AdS-Lorentz alge-
bra so(D—1,1) & so(D —1,2) algebra [9-11] in D dimensions
can be obtained from AdS-algebra so (D — 1,2) by means of the
S-expansion procedure with a semigroup which is known as 55\2/)[.
This AdS-Lorentz algebra is related to the so-called Maxwell alge-
bra [12,13] via a contraction process [14].

Recently it was shown in Ref. [15] that the resonant S-expan-
sion of the AdS Lie algebra leads to a generalization of the
AdS-Lorentz algebra when Sjﬁt) = {Aa}gzo is used as semigroup,
which is endowed with the multiplication rule AqAg = Aqqp if
a + B < N; Agrpg = Agtp—2[(N+1),2] if @ + B > N. These algebras
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are called generalized AdS-Lorentz algebras. In the same Ref. [15]
it was found that a generalized Inénii-Wigner contraction of the
generalized AdS-Lorentz algebras provides the so-called general-
ized Poincaré algebras, B,.

On the other hand, in Ref. [1] it was shown how the Newton-
Cartan formulation of Newtonian gravity can be obtained from
gauging the Bargmann algebra, i.e. the centrally extended Galilean
algebra.

This paper is organized as follows: In Section 2 it is shown that,
using an analogous procedure to that used in Ref. [16] it is possible
to obtain the non-relativistic versions of the generalized Poincaré
algebras and generalized AdS-Lorentz algebras. The nonrelativistic
algebras will be called, generalized Galilean algebras of type I and
type Il and denoted by G8, and G£, respectively. In Section 3 it is
shown that the generalized Galilean algebras of type I can be ob-
tained by a generalized Inonii-Wigner contraction of generalized
Galilean algebras of type Il. In this section it is also shown that the
procedure of S-expansion allows us to find the GB5 algebra from
the Newton Hooke algebra with central extension. In Section 4 it
is shown that the non-relativistic limit of Einstein—-Chern-Simons
gravity is given by a modified version of the Poisson equation. In
Section 5 it is found that, using an analogous procedure to that
used in Ref. [1], it is possible to find a generalization of the New-
tonian gravity. Finally our conclusions are presented in Section 6.

2. Generalized Galilean type I (G23,) and type II (G £,) algebras

The use of the procedure developed in Ref. [16], allows us
to show that it is possible to obtain the non-relativistic ver-
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sions of the generalized Poincaré algebras and of the generalized
AdS-Lorentz algebras. The nonrelativistic algebras will be called,
generalized Galilean type I and type II algebras and denoted by
g8, and G£, respectively. We consider the particular cases n =
4,5,

Consider now the non-relativistic versions of the Maxwell
and Bs5 algebras. Separating the spatial temporal components in
the generators {Pq, Jab, Za, Zap}, performing the rescaling K; —>
¢ 'Jio, Pi — R7'P;, H — cR1Pg — *M, Zjy —> ¢~ 'Zj,
Zi — R71Zi, Zg — cR71Zy — ¢®N and then taking the limit c,
R — oo, we find that:

(i) the generators of the non-relativistic version of the Maxwell
algebra, which we will denote by G984, satisfy the following com-
mutation relations

Uijs Juil = &kj Jit + 81 Jki — Ski J j1 — i Jijs

[Jij, Kkl = 8jkKi — 8K, [Ki, Pjl=—8;iM,

[Jij, Pkl =8k Pi — 8iPj, [Ki,H]=—P;,

Lij, Zil = 8kj Zit + 81jZki — OkiZ j1 — 811 Zkj,

[Jij» Zkol = 8k Zio — 8iZjo, [Pi, H1=1%Zig,

[Zij, Kkl = 6k Zio — SikZ jo, 1)

and (ii) the generators of the non-relativistic version of the Bs
algebra [2,15] which we will denote by G*Bs, satisfy the commu-
tation relations

Uijs Jial = 0w Jit + i Jki — Mki J jt — i Jkjo

[Jij, Kkl = njkKi — nikKj, [Ki, Pj] = —6;jM,

[Jij, Pkl = njxPi — nikPj, [Ki, H1=—P;,

Uijs Zkl =N Zit + Mij Zii — Mk Z j1 — Mi Zj,»
[Jij, Zkol =NjkZio — MikZjo, [Ki, Zj1= —3&;jN,

[Zij, Kkl = njkZio — nikZjo, [Ki, Zol=—Zi,

Lij> Zkl = njkZi — nikZj, [Zio, Pj1 = —4&i;N,

[Zij, Pkl=njkZi — nikZj, [Zio, HI = —Z;,

[Pi, H1 = v*Zio, (2)

where v =c/R is a finite constant with c the speed of light and R
the universe radius. Following the same procedure used previously,
it is possible to find non-relativistic versions of the generalized
AdS-Lorentz algebras, which will be called generalized Galilean
type II algebras and denoted and G£,. It is direct to show that us-
ing a In6nii-Wigner contraction procedure we can obtain the G®8,
from G£,.

3. g8, algebras
3.1. GB4 algebra from the G£4 algebra

From Ref. [15] we know that the generalized Poincaré alge-
bras can be obtained from the generalized AdS-Lorentz algebras by
means of a generalized Inonii-Wigner contraction. This property
of these relativistic algebras is inherited by their corresponding
nonrelativistic algebras. We consider, as an example, the contrac-
tion of the G£4 algebra. In fact, performing the following rescaling
P;i —> AP;, H—> AH, M — XM, Zio —> *»*Zio, Zij —> A*Zj; of
the G£4 algebra provides in the limit A —> 0 the GB,4 algebra (1).
Similarly we can get the G®B5 algebra from the G£s5 algebra.

3.2. GBs5 algebra from the Newton Hooke algebra

In Refs. [2,3] it was shown that the S-expansion procedure
allows to obtain the ‘generalized Poincaré algebras’ B, from
AdS-algebra. In this subsection it is shown that the procedure of
S-expansion allows us to find the GB5 algebra from the Newton
Hooke algebra with central extension. A representation of AdS al-
gebra is given by the matrices

1
Ly = 1 [V ]

where the matrices y,, satisfy the Clifford algebra y, v + Yvyu =
21, With @, v:0,1,---,5 and where 7, = diag(—cz, 1,1,1,1,
—Rz). The identification Jij = I'jj, Tio = cKj, I'is = RP;, T'gs =
RPo=Rc™! (H+c*M) and T, =2M with T'x = yoy1 Y2345, it
leads to the commutation relations of the Newton Hooke algebra
with central extension Ref. [17].

From Ref. [18] we find that the non-vanishing components of
the invariant tensor for so(4, 2) are given by

(Tl TpoTse ) = —8(RC)2€MUIO05-[,
(Ca{T oo Trs}) = _S(RC)ZG/,LU,OU‘[S-

Following an analogous procedure to that used in Ref. [16], we
find that the only nonzero components of the invariant tensor for
the 5-dimensional Newton Hooke algebra with central extension

(Jij JuM) = —16¢€;j11,
(Jij Pk Ky) = —16¢€ijq.

Following the definitions of Ref. [19] (see also [20]) let us
consider the S-expansion of Newton Hooke algebra with central
extension using as semigroup 5(53) = {Ao, A1, A2, A3, A3} endowed
with the multiplication rule AgAg =Aqqp if @ + B <4; Aorg =1y
if o + B > 4. After extracting a resonant and reduced subalgebra,
one finds the GB35 algebra, given by (2). The invariant tensors for
G5 can be obtained from Newton Hooke algebra with central ex-
tension. Using VIL.2 from Ref. [19] we find

4 4
(Jij JuM) = _§allV€ijkl- (JijPkKy) = —§a1lV€ijkr,

4 4
(JijZuM) = _§a31V€ijklv (ZijPpKy) = —§(X31V€ijkz,

4 4
(JijPrZp) = —§a31V€iﬂ<h (JijJuN) = —§Ol3lvéijkz,

4
(JijZiKp) = —50631‘/61'114. (3)

where the constants «; and o3 are dimensionless and the factors
I, v are introduced to display the dimension of (---), and are pa-
rameters of dimension length and velocity respectively.

4. Non-relativistic limit of Einstein-Chern-Simons gravity

The five dimensional Chern-Simons lagrangian for the 955 alge-
bra is given by [2]

L(csh)s = a12egpcge R R e’
2
+ 3Eabede <§Rabecedee + lekabRch e + lzRab Rcdhe) ,

(4)

where a1, o3 are parameters of the theory, [ is a coupling constant,
R® = dw® + 0w corresponds to the curvature 2-form in the
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first-order formalism. In Ref. [21] it was considered that in the
presence of matter the lagrangian is given by

5)
L=L3k + KLy,

where L(ci)s is the five-dimensional Chern-Simons lagrangian given
by (4), Ly = Ly (e9, h?, w®) is the matter lagrangian and « is a
coupling constant related to the effective Newton’s constant.

The Lagrangian (4) shows that standard, five-dimensional Gen-
eral Relativity emerges as the [ — 0 limit of a Chern-Simons the-
ory for the generalized Poincaré algebra B5. Here | is a length
scale, a coupling constant that characterizes different regimes
within the theory.

The variation of the lagrangian (4) w.r.t. the dynamical fields
vielbein e?, spin connection w®, h® and k?, leads to the following
field equations [22]

SL
Eabede (203 R™e e +onPRPR) =1 =, (5)
SLy
31 Eabeae RV R =Kk =2, (6)
a3128abcdeRCdDhe =0, (7)

where we have considered that the torsion vanishes T? = 0
(;i’g’b =0) and k% =0, while the field h® is associated, in the con-
text of Einstein—-Chern-Simons cosmology, with the dark energy,
as shown in Refs. [21,22].

In the case where the equations (5)-(7) satisfy the cosmological
principle and the ordinary matter is negligible compared to the
dark energy, we find that the equations (5)-(7) take the form [22]

.2 k
6(“ > )zfcsap“”, ®)
a
.. -2
3[E+<a jk>]="‘5"‘p(h)’ (9)
a a
32 (a2 +k\’
- — oM 10
Ks( a? > P (10
324 (a®+k
il (el INRN (1) 11
/<5a< a? ) P (n
-2 I . .
(a jc)[(h—h(O))g—i—h]:O. (12)
a a

The field equations (8)-(12) were completely resolved for the age
of Dark Energy in Ref. [22], where was find that the field h? has a
similar behavior of a cosmological constant.

In fact, in Section 3 of Ref. [22] has been found solutions that
describes accelerated expansion for the three possible cosmological
models of the universe. Namely, spherical expansion (k=1), flat
expansion (k =0) and hyperbolic expansion (k = —1). This means
that the Einstein—-Chern-Simons field equations have as one of
their solutions an universe in accelerated expansion. This result al-
lows us to conjecture that this solutions are compatible with the
era of Dark Energy and that the energy-momentum tensor for the
field h® corresponds to a kind of positive cosmological constant.

Introducing (6) in (5) we find

o1 h
*Eqbede (203RPee?) = <ﬁ1 Te — a—3ﬂﬂé >> : (13)

where

SLy ; SLu
ﬁma:K*(aea), ﬁzTé)=/<*<8ha>.

and * is the Hodge star operator.

In the limit of weak gravitational field one assumes that the
world metric tensor gy, is not very much different from the
Minkowski metric n,,, = diag(—1,1,...,1). In fact, it can be then
written in the form gy, = nuv + hyy, where hy, represents
the small corrections to the flat space-time metric 7,, due to
the presence of a weak gravitational field. In this approximation
|huv| << 1, so that terms of order higher than the first in hy, can
be neglected in the field equations. So that,

ds? = g, pdxtdx” = ngpee”
= —(1 —hoo)dt? + (1 + h11)(dx")? + (1 + h11)(dx?)?
+ (1 +h11)(@x*)? + (1 + h11) (dxh?.

Introducing an orthonormal basis

o Rl h2
0 0 1 1 1 .2 2 2
~11 — ~11 - ~(1 —<
e <+2)dt.e <+2)dx,e (—1—2 dx*,
h3 h*
e~ (1 + 73) dx3, et~ (1 + 74) dx?,

and using the first and second structural equations T¢ = de® +

aob a _ a a,,C
wfe’ =0, R =do + o%w we have

Vzhoo
Roo = —~—2,
00 >
Rus — d1%hoo  *hn 93°hn da*hn
=" 2 2 2
&2hoo  91%ha2  93%hyn  d4’ho
Ry = - - - ,
2 2 2 2
d3%hoo  91%h33  3%h3z  d4’h3s
R33 = - - + )
2 2 2 2
34%hoo  91%has  3°has  33°hag
Ry4 = - — — .
2 2 2 2
From (13) we can see
1 1 [¢3] (h)
Ry — Eg,uvR = _@ <ﬂ1T;w - 05_352le . (14)

In the limit of weak gravitational field one assumes that the
leading term in the energy-momentum tensors are Yoo = 0 and

T = p® 50 that
1 o1
Roo = —— ——Bap™ ). 15
0= 1243 <ﬁ1,0 . B20 (15)

On the another hand the motion of a particle described by the
geodesic equation

d2xt L dxY dxP

ds? YPds ds
where x* = {x%, x'} = {t, x'}. In the nonrelativistic limit eq. (16) be-
comes

d2x+ dx0\ 2
—=—r“< ) — 1t (17)

(16)

dt? 0\ gr

and in the limit of weak gravitational field we can put g,, =
Nuv + hyy, with |hy,| << 1, and we can neglect terms of order

h? and higher. From the definition of the Christoffel symbols we
have 'y, = —%S’jajhoo, where we have assumed that the field is
static, i.e., dog,v = 0. So that the geodetic equation is given by

A2 1
—7 = 58 dihoo. (18)
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which coincides with Newton equation of motion dt2 = —0;j¢ pro-

vided that hgg = —2¢, therefore Foo =i dj¢. This means that the
only non-zero component of the Riemann tensor corresponding
to connection F{)O is given by R0 i0 = 5“<a,<ajq>, so from (15) we
can conclude that the nonrelathlstlc limit of the five dimensional
Einstein-Chern-Simons gravity is a modified version of the Poisson
equation given by

V2= (km akzp™), (19)
where ki = 8’9713, ky = 2{43—;3 and o = 30%‘ [21]. If in (19) we choose

o =0 or ky =0 we obtain the Poisson equation in five dimensions
provided that k; =87 G.

5. Newton-Chern-Simons gravity

In Ref. [1] it was shown how the Newton-Cartan formulation
of Newtonian gravity can be obtained from gauging the Bargmann
algebra. In Refs. [2] it was shown that the gauging of ®B5 leads to
a five-dimensional Chern-Simons gravity which empties into gen-
eral relativity in a certain limit. On the other hand, we have seen
that the non-relativistic version of the 85 algebra is given by the
G5 algebra and that the procedure of S-expansion allows us to
find the GB5 algebra from the Newton Hooke algebra with central
extension. In this Section we show that, using an analogous proce-
dure to that used in Ref. [1], it is possible to find a generalization
of the Newtonian gravity.

5.1. Gauging the GB5 algebra

We start with a one-form gauge connection A valued in the
G55 algebra is given by

v 1; Voo 1 1 1
A=—-tH+ —€e'Pi+ —~h"Zo+ -h'Z; + —mM + —nN
l l l l vl vl

1 . 1 . 1 . 1 ..
+ ;a)lKi + ;k’Z,»O + Ew”jij + 5k”Zi,-, (20)

where | and v are parameters of dimension length and velocity
respectively. The corresponding two-form curvature is given by

v 1 . v 1,
F = TR(H)H + TR (Pi)P; + TR(ZO)ZO + TR (Zi)Z;

1 1 1 . 1 .
+ —R(M)M + —R(N)N + —R' (K;) Ki + —R' (Zj0) Zio
vl vl v v

+ %RU (Jij) Jij + %RU (Z3j) Zij. (21)
where
R(H)=dt, R'(P) =T —o't,
R(Zo) =dh®, R(M) =dm — o'e;,
R'(Zj)=Dh' — 'h® — k't +K';e/,
R(N) =dn — o'h;j — klej,
R'(Zio) = Dk' + €'t + k' j0/, R'(K;) = D',
RU(Jij) =RY, RY(Zyj) = DLV, (22)
with T =de! + wijej, R =dol + wikwkj.

Since the gauge connection A transforms as

SA=dA +[A, A],

where

vV o 1 ; vV oo 1, 1 1
A=T§‘ H+ ¢ Pi+—p Zo—i——pZi—i-—UM—i-W)/N

l l l vl
1o 1 1 1
+ MK+ X Zio+ 54 Ty + 5 X Zij,

we find, using the GB5 algebra, that the variations of the gauge
fields are given by

5t =d¢0, sel = D¢t — wic® —AVe; 4 1A,
Ahj+ RO + kg — kg0 —
dm=do — a)i;,- + eiki, Sw' =D\l —

Shi=Dp' —wip® — Xijej_i_l.xi'
Aijwj,

w'pi+e'xi, h° =dp°,

— 'z, " = DAY,

Sn=dy — kig,- —i—h'li —
Ski=Dy' - AUkj - Xija)j +kij)\,j +ef¢?
Sk = Dy k! AN 4 kAT, (23)

where the derivative D is covariant with respect to the J-trans-
formations.

Following Ref. [1] we impose now several curvature constraints.
These constraints convert the P and H transformations into gen-
eral coordinate transformations in space and time. We write the
parameter of the general coordinate transformations £* as

gh=elct+ 170
Here we have used the inverse spatial vielbein e*; and the in-

verse temporal vielbein t* defined by [1]

Iy [ Mol —
eue 81,rru_l re,t 0

Teti =0, el e’y =8", — 1T’ (24)

From (23) we can see that only the gauge fields e/, T, m,,
h,t, hg and n,, transform under the P and H transformations.
These are the fields which should remain independents, while
the remaining fields will be dependent upon the aforementioned
fields. This can be achieved with the following constraints

R(H)=dt =0, Ri(P)) =T' — 't =0, (25)
R(M) =dm — w'e; =0, R(Zy) =dh® =0,
R'(Zi)=Dh' — 'h® — k't +Kie! =0

R(N) =dn — w'h; — kie; =0. (26)

An analogous procedure to that used in Ref. [1] allows us to
obtain the k," and k' fields. In fact, using the constraints (26)
we find

@l = @pen’e™ — @Fuen)le’ +eu ey etie?!
— el (27)
' = eV aumy) + eV tle,dvep) + Tt el omy,
+7V9en’, (28)
= (Dphy)ie’d — (DmhU e + ek (Dhopke ed
‘Cuev[ikvj].
(29)

— o, h%e" + ol h0 e h9evier) —

't — euraf,

kui = e“ia[ﬂnv] — e”ia)"[uh‘,]k + em‘lf'oeMjD[uhp]j
— e”ir/’eﬂjwj[vhop] + tMr”epia[vnp] — tﬂr”e/”'wk[vhpk]

+ 'CVD[th]i - ‘L’Ua)i[uhov]. (30)
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5.2. Newton-Chern-Simons lagrangian

A Chern-Simons lagrangian form Lcps(A, 0) = Q2n+1(A,0) is a
differential form defined for a connection, whose exterior deriva-
tive yields a Chern class. Although the Chern classes are gauge
invariant, the Chern-Simons forms are not; under gauge trans-
formations they change by a closed form. A transgression form
Q2n+1(A1, A2) on the other hand, is an invariant differential form
whose exterior derivative is the difference of two Chern classes. It
generalizes the Chern-Simons form with the additional advantage
that it is gauge invariant.

To obtain the lagrangian for 5-dimensional Chern-Simons grav-
ity we use subspaces separation method introduced in Ref. [23]
and write Lcpg in terms of a transgression form, a Chern-Simons
form and a total exact form

Qs5(A1,0) = Qs5(A1, A2) + Qs5(A2,0) +dQ4 (A1, A2, 0),

where,
1

Q5(A1,A2)=3fdt<9Ff>, (31)
0

with 0 = Aj — Az, Ac=A+10, Ay =A, Ay =w =10V Jjj, Fi =

dAt + ArA¢ and
1
Q5<Az,0)=3/dt<AzF3>, (32)
0
where now A; =tA; =tw.
So that if we don't consider boundary terms the Chern-Simons
lagrangian is given by:

N 4 .. -
Lens, g5 = 018 (—ZR” Tkl — §R”a)ka)lt + 2RYDwke!

y 4 . .. y
- R’JR"’m) + a8 <§v2R”ekelr — 2RV DK !

RikkwlT — gRijwkwlf + 2R Dw*n!

— ﬂDk”T"w' — Dk ¥ !t — RUKMdm
3

y 2 .. 4 ..
RUkKe™ gy — —R‘fw,’;k'"’m - —k” T*Do!
3

I

—kiDw*w't — 2RUTKK! — ”a)kk T+ - R”kkmw e

2 . g y
+ §a);nkf’"Da)"el — RURMp — 2R”a)k’"kme’> . (33)

The lagrangian variation of (33) leads to the following equations
of motion:

4 4 ’ sL
giju | —= a1 RUo* ! + Zv2azRUeke! ) =k =M (34)
3 3 8T
ko M
§a35ijkIORUw<(U =K (35)
3 2 3 SL
4¢iji (mR”Dw" — ivzagR”ekr) KS—IY, (36)
SL
23R D = ke h"f, (37)
aneguRIRM = —c =2 (38)
8m
assijuRYRM = =M (39)

én

o3

2001 s . 20
48,‘jk1 <T1R”a)kr —(X]RUTk-i- 3 R”a)’ OlgRUth>

SL
=T (40)
40[1

80[1
&ijid (—20{1ka€me — 401 T*Do' — oroldt — TDa)kw’r

8 4
+ 201 R el — 201 RMdm + §v2a3T"elr + TBekeldr
4o . o .
— 23R h ' — 43 DR¥ D! — 2B koldt — 2 pokalt
km, . il Kl 8Lm
+ 203R™ k! — a3R dn) — M (41)
Sl

where, we have considered, in analogy with the Section 4,

kil = k! = 0. The first four equations corresponding to the non-

relativistic version of the Einstein equations. The equations (38)

and (39) are second order curvatures, then in the limit of weak

gravitational field ‘ZL—m’V’ = ‘Sé—n"" = 0. The equations (40) and (41) cor-

responding to the non-relativistic version of the torsion equation.
In analogy with the Section 4, the first two lead us to

3 ,31 al,BZ (h)

where we found that 4Rgg = Qqo with Rgg = V2¢. Finally from
(42) we obtain

3
V2= Soatkip = akyp™), (43)

where the constants ki = 8%13 =8nG, ky = % and o= %‘
This result coincides with the equation (19) if v = 7. This re-
sult shows that the non-relativistic limit of Einstein-Chern-Simons
gravity, invariant under the 955 algebra coincides with Newton-

Chern-Simons gravity invariant under the algebra G*Bs.
6. Comments

In the present work we have shown that: (i) it is possible to
obtain the non-relativistic versions of both generalized Poincaré al-
gebras and generalized AdS-Lorentz algebras. These non-relativistic
algebras are called generalized Galilean type I and type II alge-
bras and denoted by G, and G£, respectively. (ii) The proce-
dure of S-expansion allows us to find the G5 algebra from the
Newton-Hooke algebra with central extension. (iii) Using an anal-
ogous procedure to that used in Ref. [1], it is possible to find
the non-relativistic limit of the five dimensional Einstein-Chern-
Simons gravity which lead us to a modified version of the Poisson
equation.

It is interesting to note that the B5 algebra is a generalization
of the Poincaré algebra which includes the extra generators Zg,
and Z,. This algebra leads to a Chern-Simons lagrangian which co-
incides with the Einstein-Hilbert lagrangian in a certain limit, even
if the new gauge field vanishes and therefore leads to newtonian
gravity in the non-relativistic limit. The generators Zjo, Z;j, are the
space-time components of the Z, = (Zio, Zij) relativistic genera-
tors, whose gauge field k% = (ki, ki) we fix to k% =0 in the field
equations.

On the other hand the gauge field h® = (h°, h') associated to
the generators Z, generates modifications in the Einstein equa-
tions which can be interpretated, in the cosmological context, as
an effect due to the dark energy [21,22]. This modification leads, in
the non-relativistic limit, to a modification in the Poisson equation
shown in (43), which could be compatible with the Dark Matter.



438 N. Gonzdlez et al. / Physics Letters B 755 (2016) 433-438

This would allow us conjecture that Dark Matter could be inter-
preted as the non-relativistic limit of Dark Energy.

The modified form of Poisson equation (43) suggests a possible
connection with the so-called MOND approach to gravity interac-
tions. In fact the first complete theory of MOND was constructed
by Milgrom and Bekenstein in Ref. [24]. This theory is based on
the lagrangian

@ (I
0 g1

- 44
el bl RS (44)

where ¢ is the gravitational potential (meaning that for a test
particle d = —V¢), and p denotes the matter mass density. The
corresponding equation for ¢ is given by

-

Ve

‘% =47 Gp, (45)

A

where w(/y) =df (y)/dy, which can be written as
UVip =4nGp — V- Vé. (46)

Comparing this last equation with equation (43), we can see
that in some particular cases the MOND approach to gravity could
coincide with the modified Poisson equation (43).
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