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The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras 
are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type 
II and denoted by GBn and GLn respectively. Using a generalized Inönü–Wigner contraction procedure 
we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean 
algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton 
Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the 
nonrelativistic limit of the five dimensional Einstein–Chern–Simons gravity is given by a modified version 
of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which 
leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

In Refs. [2,3] it was shown that the S-expansion procedure al-
lows to construct Chern–Simons gravities in odd dimensions in-
variant under an algebra referred to as Bm algebra and Born–
Infeld gravities in even dimensions [4–7] invariant under a certain 
subalgebra of the Bm algebra, leading to general relativity in a 
certain limit. The Bm algebras, which could be also called ‘gen-
eralized Poincaré algebras’, were constructed from AdS-algebra and 
a particular semigroup denoted by S(N)

E = {λα}N+1
α=0 , which is en-

dowed with the multiplication rule λαλβ = λα+β if α +β ≤ N + 1; 
λαλβ = λN+1 if α + β > N + 1.

In Ref. [8] it was shown that the so-called AdS-Lorentz alge-
bra so (D − 1,1) ⊕ so (D − 1,2) algebra [9–11] in D dimensions 
can be obtained from AdS-algebra so (D − 1,2) by means of the 
S-expansion procedure with a semigroup which is known as S(2)

M . 
This AdS-Lorentz algebra is related to the so-called Maxwell alge-
bra [12,13] via a contraction process [14].

Recently it was shown in Ref. [15] that the resonant S-expan-
sion of the AdS Lie algebra leads to a generalization of the 
AdS-Lorentz algebra when S(N)

M = {λα}N
α=0 is used as semigroup, 

which is endowed with the multiplication rule λαλβ = λα+β if 
α + β ≤ N; λαλβ = λα+β−2[(N+1)/2] if α + β > N . These algebras 
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are called generalized AdS-Lorentz algebras. In the same Ref. [15]
it was found that a generalized Inönü–Wigner contraction of the 
generalized AdS-Lorentz algebras provides the so-called general-
ized Poincaré algebras, Bm .

On the other hand, in Ref. [1] it was shown how the Newton–
Cartan formulation of Newtonian gravity can be obtained from 
gauging the Bargmann algebra, i.e. the centrally extended Galilean 
algebra.

This paper is organized as follows: In Section 2 it is shown that, 
using an analogous procedure to that used in Ref. [16] it is possible 
to obtain the non-relativistic versions of the generalized Poincaré 
algebras and generalized AdS-Lorentz algebras. The nonrelativistic 
algebras will be called, generalized Galilean algebras of type I and 
type II and denoted by GBn and GLn respectively. In Section 3 it is 
shown that the generalized Galilean algebras of type I can be ob-
tained by a generalized Inönü–Wigner contraction of generalized 
Galilean algebras of type II. In this section it is also shown that the 
procedure of S-expansion allows us to find the GB5 algebra from 
the Newton Hooke algebra with central extension. In Section 4 it 
is shown that the non-relativistic limit of Einstein–Chern–Simons 
gravity is given by a modified version of the Poisson equation. In 
Section 5 it is found that, using an analogous procedure to that 
used in Ref. [1], it is possible to find a generalization of the New-
tonian gravity. Finally our conclusions are presented in Section 6.

2. Generalized Galilean type I (GBn) and type II (GLn) algebras

The use of the procedure developed in Ref. [16], allows us 
to show that it is possible to obtain the non-relativistic ver-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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sions of the generalized Poincaré algebras and of the generalized 
AdS-Lorentz algebras. The nonrelativistic algebras will be called, 
generalized Galilean type I and type II algebras and denoted by 
GBn and GLn respectively. We consider the particular cases n =
4, 5.

Consider now the non-relativistic versions of the Maxwell 
and B5 algebras. Separating the spatial temporal components in 
the generators {Pa, Jab, Za, Zab}, performing the rescaling Ki −→
c−1 J i0, Pi −→ R−1 Pi , H −→ cR−1 P0 − c2M , Zi0 −→ c−1 Zi0, 
Zi −→ R−1 Zi , Z0 −→ cR−1 Z0 − c2N and then taking the limit c, 
R → ∞, we find that:

(i) the generators of the non-relativistic version of the Maxwell 
algebra, which we will denote by GB4, satisfy the following com-
mutation relations

[ J i j, Jkl] = δkj J il + δl j Jki − δki J jl − δli Jkj ,

[ J i j, Kk] = δ jk Ki − δik K j , [Ki, P j] = −δi j M ,

[ J i j, Pk] = δ jk P i − δik P j , [Ki, H] = −Pi ,

[ J i j, Zkl] = δkj Zil + δl j Zki − δki Z jl − δli Zkj ,

[ J i j, Zk0] = δ jk Zi0 − δik Z j0, [Pi, H] = ν2 Zi0,

[Zij, Kk] = δ jk Zi0 − δik Z j0, (1)

and (ii) the generators of the non-relativistic version of the B5
algebra [2,15] which we will denote by GB5, satisfy the commu-
tation relations

[ J i j, Jkl] = ηkj J il + ηl j Jki − ηki J jl − ηli Jkj ,

[ J i j, Kk] = η jk Ki − ηik K j , [Ki, P j] = −δi j M ,

[ J i j, Pk] = η jk P i − ηik P j , [Ki, H] = −Pi ,

[ J i j, Zkl] = ηkj Zil + ηl j Zki − ηki Z jl − ηli Zkj ,

[ J i j, Zk0] = η jk Zi0 − ηik Z j0, [Ki, Z j] = −δi j N ,

[Zij, Kk] = η jk Zi0 − ηik Z j0, [Ki, Z0] = −Zi ,

[ J i j, Zk] = η jk Zi − ηik Z j , [Zi0, P j] = −δi j N ,

[Zij, Pk] = η jk Zi − ηik Z j , [Zi0, H] = −Zi ,

[Pi, H] = ν2 Zi0, (2)

where ν = c/R is a finite constant with c the speed of light and R
the universe radius. Following the same procedure used previously, 
it is possible to find non-relativistic versions of the generalized 
AdS-Lorentz algebras, which will be called generalized Galilean 
type II algebras and denoted and GLn . It is direct to show that us-
ing a Inönü–Wigner contraction procedure we can obtain the GBn

from GLn .

3. GBn algebras

3.1. GB4 algebra from the GL4 algebra

From Ref. [15] we know that the generalized Poincaré alge-
bras can be obtained from the generalized AdS-Lorentz algebras by 
means of a generalized Inönü–Wigner contraction. This property 
of these relativistic algebras is inherited by their corresponding 
nonrelativistic algebras. We consider, as an example, the contrac-
tion of the GL4 algebra. In fact, performing the following rescaling 
Pi −→ λPi , H −→ λH , M −→ λM , Zi0 −→ λ2 Zi0, Zij −→ λ2 Zij of 
the GL4 algebra provides in the limit λ −→ 0 the GB4 algebra (1). 
Similarly we can get the GB5 algebra from the GL5 algebra.
3.2. GB5 algebra from the Newton Hooke algebra

In Refs. [2,3] it was shown that the S-expansion procedure 
allows to obtain the ‘generalized Poincaré algebras’ Bn from 
AdS-algebra. In this subsection it is shown that the procedure of 
S-expansion allows us to find the GB5 algebra from the Newton 
Hooke algebra with central extension. A representation of AdS al-
gebra is given by the matrices

�μν = 1

4

[
γμ,γν

]
,

where the matrices γμ satisfy the Clifford algebra γμγν + γνγμ =
2ημν , with μ, ν : 0, 1, · · · , 5 and where ημν = diag

(−c2, 1, 1, 1, 1,

−R2
)
. The identification J i j = �i j , �i0 = cKi , �i5 = R Pi , �05 =

R P0 = Rc−1
(

H + c2M
)

and �∗ = 2M with �∗ = γ0γ1γ2γ3γ4γ5, it 
leads to the commutation relations of the Newton Hooke algebra 
with central extension Ref. [17].

From Ref. [18] we find that the non-vanishing components of 
the invariant tensor for so(4, 2) are given by

〈�∗{�μν�ρσ �δτ }〉 = −8(Rc)2εμνρσδτ ,

〈�∗{�μν�ρσ �τ5}〉 = −8(Rc)2εμνρστ5.

Following an analogous procedure to that used in Ref. [16], we 
find that the only nonzero components of the invariant tensor for 
the 5-dimensional Newton Hooke algebra with central extension

〈 J i j Jkl M〉 = −16εi jkl ,

〈 J i j Pk Kl〉 = −16εi jkl .

Following the definitions of Ref. [19] (see also [20]) let us 
consider the S-expansion of Newton Hooke algebra with central 
extension using as semigroup S(3)

E = {λ0, λ1, λ2, λ3, λ3} endowed 
with the multiplication rule λαλβ = λα+β if α + β ≤ 4; λαλβ = λ4
if α + β > 4. After extracting a resonant and reduced subalgebra, 
one finds the GB5 algebra, given by (2). The invariant tensors for 
GB5 can be obtained from Newton Hooke algebra with central ex-
tension. Using VII.2 from Ref. [19] we find

〈 J i j Jkl M〉 = −4

3
α1lvεi jkl , 〈 J i j Pk Kl〉 = −4

3
α1lvεi jkl,

〈 J i j Zkl M〉 = −4

3
α3lvεi jkl , 〈Zij Pk Kl〉 = −4

3
α3lvεi jkl,

〈 J i j Pk Zl0〉 = −4

3
α3lvεi jkl , 〈 J i j Jkl N〉 = −4

3
α3lvεi jkl ,

〈 J i j Zk Kl〉 = −4

3
α3lvεi jkl , (3)

where the constants α1 and α3 are dimensionless and the factors 
l, v are introduced to display the dimension of 〈· · · 〉, and are pa-
rameters of dimension length and velocity respectively.

4. Non-relativistic limit of Einstein–Chern–Simons gravity

The five dimensional Chern–Simons lagrangian for the B5 alge-
bra is given by [2]

L(5)

ChS = α1l2εabcde Rab Rcdee

+ α3εabcde

(
2

3
Rabecedee + 2l2kab Rcd T e + l2 Rab Rcdhe

)
,

(4)

where α1, α3 are parameters of the theory, l is a coupling constant, 
Rab = dωab + ωa

cω
cb corresponds to the curvature 2-form in the 
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first-order formalism. In Ref. [21] it was considered that in the 
presence of matter the lagrangian is given by

L = L(5)

ChS + κ LM ,

where L(5)

ChS is the five-dimensional Chern–Simons lagrangian given 
by (4), LM = LM(ea, ha, ωab) is the matter lagrangian and κ is a 
coupling constant related to the effective Newton’s constant.

The Lagrangian (4) shows that standard, five-dimensional Gen-
eral Relativity emerges as the l → 0 limit of a Chern–Simons the-
ory for the generalized Poincaré algebra B5. Here l is a length 
scale, a coupling constant that characterizes different regimes 
within the theory.

The variation of the lagrangian (4) w.r.t. the dynamical fields 
vielbein ea , spin connection ωab , ha and kab , leads to the following 
field equations [22]

εabcde(2α3 Rabeced + α1l2 Rab Rcd) = κ
δLM

δee
, (5)

α3l2εabcde Rab Rcd = κ
δLM

δhe
, (6)

α3l2εabcde Rcd Dhe = 0, (7)

where we have considered that the torsion vanishes T a = 0
( δLM
δωab = 0) and kab = 0, while the field ha is associated, in the con-

text of Einstein–Chern–Simons cosmology, with the dark energy, 
as shown in Refs. [21,22].

In the case where the equations (5)–(7) satisfy the cosmological 
principle and the ordinary matter is negligible compared to the 
dark energy, we find that the equations (5)–(7) take the form [22]

6

(
ȧ2 + k

a2

)
= κ5αρ(h), (8)

3

[
ä

a
+

(
ȧ2 + k

a2

)]
= −κ5αp(h), (9)

3l2

κ5

(
ȧ2 + k

a2

)2

= ρ(h), (10)

3l2

κ5

ä

a

(
ȧ2 + k

a2

)
= −p(h), (11)

(
ȧ2 + k

a2

)[
(h − h(0))

ȧ

a
+ ḣ

]
= 0. (12)

The field equations (8)–(12) were completely resolved for the age 
of Dark Energy in Ref. [22], where was find that the field ha has a 
similar behavior of a cosmological constant.

In fact, in Section 3 of Ref. [22] has been found solutions that 
describes accelerated expansion for the three possible cosmological 
models of the universe. Namely, spherical expansion (k = 1), flat 
expansion (k = 0) and hyperbolic expansion (k = −1). This means 
that the Einstein–Chern–Simons field equations have as one of 
their solutions an universe in accelerated expansion. This result al-
lows us to conjecture that this solutions are compatible with the 
era of Dark Energy and that the energy-momentum tensor for the 
field ha corresponds to a kind of positive cosmological constant.

Introducing (6) in (5) we find

∗εabcde(2α3 Rabeced) =
(

β1ϒe − α1

α3
β2ϒ

(h)
e

)
, (13)

where

β1ϒa = κ ∗
(

δLM

δea

)
, β2ϒ

(h)
a = κ ∗

(
δLM

δha

)
,

and ∗ is the Hodge star operator.
In the limit of weak gravitational field one assumes that the 
world metric tensor gμν is not very much different from the 
Minkowski metric ημν = diag(−1, 1, . . . , 1). In fact, it can be then 
written in the form gμν = ημν + hμν , where hμν represents 
the small corrections to the flat space–time metric ημν due to 
the presence of a weak gravitational field. In this approximation ∣∣hμν

∣∣ << 1, so that terms of order higher than the first in hμν can 
be neglected in the field equations. So that,

ds2 = gμνdxμdxν = ηabeaeb

= −(1 − h00)dt2 + (1 + h11)(dx1)2 + (1 + h11)(dx2)2

+ (1 + h11)(dx3)2 + (1 + h11)(dx4)2.

Introducing an orthonormal basis

e0 ≈
(

1 + h0
0

2

)
dt, e1 ≈

(
1 + h1

1

2

)
dx1, e2 ≈

(
1 + h2

2

2

)
dx2,

e3 ≈
(

1 + h3
3

2

)
dx3, e4 ≈

(
1 + h4

4

2

)
dx4,

and using the first and second structural equations T a = dea +
ωa

beb = 0, Ra
b = dωa

b + ωa
cω

c
b we have

R00 = −∇2h00

2
,

R11 = ∂1
2h00

2
− ∂2

2h11

2
− ∂3

2h11

2
− ∂4

2h11

2
,

R22 = ∂2
2h00

2
− ∂1

2h22

2
− ∂3

2h22

2
− ∂4

2h22

2
,

R33 = ∂3
2h00

2
− ∂1

2h33

2
− ∂2

2h33

2
+ ∂4

2h33

2
,

R44 = ∂4
2h00

2
− ∂1

2h44

2
− ∂2

2h44

2
− ∂3

2h44

2
.

From (13) we can see

Rμν − 1

2
gμν R = − 1

8α3

(
β1ϒμν − α1

α3
β2ϒ

(h)
μν

)
. (14)

In the limit of weak gravitational field one assumes that the 
leading term in the energy–momentum tensors are ϒ00 = ρ and 
ϒ

(h)
00 = ρ(h) so that

R00 = 1

12α3

(
β1ρ − α1

α3
β2ρ

(h)

)
. (15)

On the another hand the motion of a particle described by the 
geodesic equation

d2xμ

ds2
+ �

μ
νρ

dxν

ds

dxρ

ds
= 0, (16)

where xμ = {x0, xi} = {t, xi}. In the nonrelativistic limit eq. (16) be-
comes

d2xμ

dt2
= −�

μ
00

(
dx0

dt

)2

= −�
μ
00, (17)

and in the limit of weak gravitational field we can put gμν =
ημν + hμν , with 

∣∣hμν

∣∣ << 1, and we can neglect terms of order 
h2 and higher. From the definition of the Christoffel symbols we 
have �i

00 = − 1
2 δi

j∂ jh00, where we have assumed that the field is 
static, i.e., ∂0 gμν = 0. So that the geodetic equation is given by

d2xi

2
= 1

δi
j∂ jh00, (18)
dt 2
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which coincides with Newton equation of motion d2 xi

dt2 = −∂iφ pro-

vided that h00 = −2φ, therefore �i
00 = δi j∂ jφ. This means that the 

only non-zero component of the Riemann tensor corresponding 
to connection �i

00 is given by Ri
0 j0 = δik∂k∂ jφ, so from (15) we 

can conclude that the nonrelativistic limit of the five dimensional 
Einstein–Chern–Simons gravity is a modified version of the Poisson 
equation given by

∇2φ = 2

3

(
k1ρ − αk2ρ

(h)
)

, (19)

where k1 = β1
8α3

, k2 = β2
24α3

and α = 3α1
α3

[21]. If in (19) we choose 
α = 0 or k2 = 0 we obtain the Poisson equation in five dimensions 
provided that k1 = 8πG .

5. Newton–Chern–Simons gravity

In Ref. [1] it was shown how the Newton–Cartan formulation 
of Newtonian gravity can be obtained from gauging the Bargmann 
algebra. In Refs. [2] it was shown that the gauging of B5 leads to 
a five-dimensional Chern–Simons gravity which empties into gen-
eral relativity in a certain limit. On the other hand, we have seen 
that the non-relativistic version of the B5 algebra is given by the 
GB5 algebra and that the procedure of S-expansion allows us to 
find the GB5 algebra from the Newton Hooke algebra with central 
extension. In this Section we show that, using an analogous proce-
dure to that used in Ref. [1], it is possible to find a generalization 
of the Newtonian gravity.

5.1. Gauging the GB5 algebra

We start with a one-form gauge connection A valued in the 
GB5 algebra is given by

A = v

l
τ H + 1

l
ei P i + v

l
h0 Z0 + 1

l
hi Zi + 1

vl
mM + 1

vl
nN

+ 1

v
ωi Ki + 1

v
ki Zi0 + 1

2
ωi j J i j + 1

2
kij Zi j, (20)

where l and v are parameters of dimension length and velocity 
respectively. The corresponding two-form curvature is given by

F = v

l
R(H)H + 1

l
Ri(Pi)Pi + v

l
R(Z0)Z0 + 1

l
Ri(Zi)Zi

+ 1

vl
R(M)M + 1

vl
R(N)N + 1

v
Ri (Ki) Ki + 1

v
Ri (Zi0) Zi0

+ 1

2
Rij ( J i j

)
J i j + 1

2
Rij (Zij

)
Zij, (21)

where

R(H) = dτ , Ri(Pi) = T i − ωiτ ,

R(Z0) = dh0, R(M) = dm − ωiei ,

Ri(Zi) = Dhi − ωih0 − kiτ + ki
je

j ,

R(N) = dn − ωihi − kiei ,

Ri(Zi0) = Dki + eiτ + ki
jω

j , Ri(Ki) = Dωi ,

Rij( J i j) = Rij , Rij(Zij) = Dkij , (22)

with T i = dei + ωi je j , Rij = dωi j + ωi
kω

kj .
Since the gauge connection A transforms as

δA = d� + [A,�] ,
where

� = v

l
ζ 0 H + 1

l
ζ i P i + v

l
ρ0 Z0 + 1

l
ρ i Zi + 1

vl
σ M + 1

vl
γ N

+ 1

v
λi Ki + 1

v
χ i Zi0 + 1

2
λi j J i j + 1

2
χ i j Zi j ,

we find, using the GB5 algebra, that the variations of the gauge 
fields are given by

δτ = dζ 0, δei = Dζ i − ωiζ 0 − λi je j + τλi ,

δhi = Dρ i − ωiρ0 − λi jh j + h0λi + kijζ j − kiζ 0 − χ i je j + τχ i ,

δm = dσ − ωiζi + eiλi , δωi = Dλi − λi jω j ,

δn = dγ − kiζi + hiλi − ωiρi + eiχi , δh0 = dρ0,

δki = Dχ i − λi jk j − χ i jω j + kijλ j + eiζ 0 − ζ iτ , δωi j = Dλi j ,

δkij = Dχ i j + ki
kλ

kj + k j
kλ

ik , (23)

where the derivative D is covariant with respect to the J -trans-
formations.

Following Ref. [1] we impose now several curvature constraints. 
These constraints convert the P and H transformations into gen-
eral coordinate transformations in space and time. We write the 
parameter of the general coordinate transformations ξλ as

ξλ = eλ
i ζ i + τλζ 0.

Here we have used the inverse spatial vielbein eλ
i and the in-

verse temporal vielbein τλ defined by [1]

ei
μeμ

j = δi
j , τμτμ = 1, τμei

μ = 0

τμeμ
i = 0, ei

μeν
i = δν

μ − τμτν . (24)

From (23) we can see that only the gauge fields eμ
i , τμ , mμ , 

hμ
i , h0

μ and nμ transform under the P and H transformations. 
These are the fields which should remain independents, while 
the remaining fields will be dependent upon the aforementioned 
fields. This can be achieved with the following constraints

R(H) = dτ = 0, Ri(Pi) = T i − ωiτ = 0, (25)

R(M) = dm − ωiei = 0, R(Z0) = dh0 = 0,

Ri(Zi) = Dhi − ωih0 − kiτ + ki
je

j = 0,

R(N) = dn − ωihi − kiei = 0. (26)

An analogous procedure to that used in Ref. [1] allows us to 
obtain the kμ

i j and kμ
i fields. In fact, using the constraints (26)

we find

ωμ
i j = (∂[μeν])ieν j − (∂[μeν]) jeνi + eμk(∂[νeρ])keνieρ j

− τμeν[iων
j], (27)

ωμ
i = eνi∂[μmν] + eνiτρeμ j∂[νeρ] j + τμτνeρi∂[νmρ]
+ τ ν∂[μeν]i, (28)

kμ
i j = (D[μhν])ieν j − (D[μhν]) jeνi + eμk(D[νhρ])keνieρ j

− ωi[μh0
ν]eν j + ω

j
[μh0

ν]eνi − eμkω
k[νh0

ν]eνieρ j − τμeν[ikν
j],
(29)

kμ
i = eνi∂[μnν] − eνiωk[μhν]k + eνiτρeμ j D[νhρ] j

− eνiτρeμ jω
j [νh0

ρ] + τμτνeρi∂[νnρ] − τμτνeρiωk[νhρk]
+ τ ν D[μhν]i − τ νωi [μh0

ν]. (30)
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5.2. Newton–Chern–Simons lagrangian

A Chern–Simons lagrangian form LChS(A, 0) ≡ Q 2n+1(A, 0) is a 
differential form defined for a connection, whose exterior deriva-
tive yields a Chern class. Although the Chern classes are gauge 
invariant, the Chern–Simons forms are not; under gauge trans-
formations they change by a closed form. A transgression form 
Q 2n+1(A1, A2) on the other hand, is an invariant differential form 
whose exterior derivative is the difference of two Chern classes. It 
generalizes the Chern–Simons form with the additional advantage 
that it is gauge invariant.

To obtain the lagrangian for 5-dimensional Chern–Simons grav-
ity we use subspaces separation method introduced in Ref. [23]
and write LChS in terms of a transgression form, a Chern–Simons 
form and a total exact form

Q 5(A1,0) = Q 5(A1, A2) + Q 5(A2,0) + dQ 4(A1, A2,0),

where,

Q 5(A1, A2) = 3

1∫
0

dt
〈
θ F 2

t

〉
, (31)

with θ = A1 − A2, At = A2 + tθ , A1 = A, A2 = ω = 1
2 ωi j J i j , Ft =

dAt + At At and

Q 5(A2,0) = 3

1∫
0

dt
〈
A2 F 2

t

〉
, (32)

where now At = t A2 = tω.
So that if we don’t consider boundary terms the Chern–Simons 

lagrangian is given by:

LChS,GB5 = α1εi jkl

(
−2Rij T kωl − 4

3
Rijωkωlτ + 2Rij Dωkel

− Rij Rklm
)

+ α3εi jkl

(
4

3
ν2 Rijekelτ − 2Rij Dhkωl

− 4

3
Rijkkωlτ − 4

3
Rijωkωlτ̂ + 2Rij Dωkhl

− 4

3
Dkij T kωl − Dkijωkωlτ − Rijkkldm

− 2

3
Rijkklemωm − 2

3
Rijωk

mkmlm − 4

3
kij T k Dωl

− kij Dωkωlτ − 2Rij T kkl − 4

3
Rijωkklτ + 2

3
Rijkkmωmel

+ 2

3
ωi

mk jm Dωkel − Rij Rkln − 2Rijωkmkmel
)

. (33)

The lagrangian variation of (33) leads to the following equations 
of motion:

εi jkl

(
−4

3
α1 Rijωkωl + 4

3
ν2α3 Rijekel

)
= κ

δLM

δτ
, (34)

4

3
α3εi jkl0 Rijωkωl = −κ

δLM

δτ̂
, (35)

4εi jkl

(
α1 Rij Dωk − 2

3
ν2α3 Rijekτ

)
= κ

δLM

δel
, (36)

2α3εi jkl R
i j Dωk = κ

δLM

δhl
, (37)

α1εi jkl R
i j Rkl = −κ

δLM

δm
, (38)

α3εi jkl R
i j Rkl = −κ

δLM , (39)

4εi

εi jk

wh
kij

rela
and
gra
res

∗εi

wh
(42

∇2

wh

Thi
sul
gra
Che

6. 

obt
geb
alg
bra
dur
New
ogo
the
Sim
equ

of 
and
inc
if t
gra
spa
tor
equ

the
tion
an 
the
sho
δn
jkl

(
2α1

3
Rijωkτ − α1 Rij T k + 2α3

3
Rijωkτ̂ − α3 Rij Dhk

)

= κ
δLM

δωl
, (40)

l

(
−2α1 Rkmemωl − 4α1T k Dωl − 4α1

3
ωkωldτ − 8α1

3
Dωkωlτ

+ 2α1 Rkmωmel − 2α1 Rkldm + 8

3
ν2α3T kelτ + 4α3

3
ekeldτ

− 2α3 Rkmhmωl − 4α3 Dhk Dωl − 4α3

3
ωkωldτ̂ − 8α3

3
Dωkωlτ̂

+ 2α3 Rkmωmhl − α3 Rkldn
)

= κ
δLM

δωi j
, (41)

ere, we have considered, in analogy with the Section 4, 
= ki = 0. The first four equations corresponding to the non-
tivistic version of the Einstein equations. The equations (38)
 (39) are second order curvatures, then in the limit of weak 

vitational field δLM
δm = δLM

δn = 0. The equations (40) and (41) cor-
ponding to the non-relativistic version of the torsion equation.
In analogy with the Section 4, the first two lead us to

jkl R
i jekel = 3

4ν2

(
β1

α3
ϒ0 − α1β2

α3
2

ϒ
(h)
0

)
= �0, (42)

ere we found that 4R00 = �00 with R00 = ∇2φ. Finally from 
) we obtain

φ = 3

2ν2
(k1ρ − αk2ρ

(h)), (43)

ere the constants k1 = β1
8α3

= 8πG , k2 = β2
24α3

and α = 3α1
α3

. 
s result coincides with the equation (19) if ν = 3

2 . This re-
t shows that the non-relativistic limit of Einstein–Chern–Simons 
vity, invariant under the B5 algebra coincides with Newton–
rn–Simons gravity invariant under the algebra GB5.

Comments

In the present work we have shown that: (i) it is possible to 
ain the non-relativistic versions of both generalized Poincaré al-
ras and generalized AdS-Lorentz algebras. These non-relativistic 

ebras are called generalized Galilean type I and type II alge-
s and denoted by GBn and GLn respectively. (ii) The proce-
e of S-expansion allows us to find the GB5 algebra from the 

ton–Hooke algebra with central extension. (iii) Using an anal-
us procedure to that used in Ref. [1], it is possible to find 
 non-relativistic limit of the five dimensional Einstein–Chern–
ons gravity which lead us to a modified version of the Poisson 
ation.
It is interesting to note that the B5 algebra is a generalization 
the Poincaré algebra which includes the extra generators Zab
 Za . This algebra leads to a Chern–Simons lagrangian which co-

ides with the Einstein–Hilbert lagrangian in a certain limit, even 
he new gauge field vanishes and therefore leads to newtonian 
vity in the non-relativistic limit. The generators Zi0, Zij , are the 
ce–time components of the Zab = (

Zi0, Zij
)

relativistic genera-
s, whose gauge field kab = (

ki,kij
)

we fix to kab = 0 in the field 
ations.
On the other hand the gauge field ha = (

h0,hi
)

associated to 
 generators Za generates modifications in the Einstein equa-
s which can be interpretated, in the cosmological context, as 

effect due to the dark energy [21,22]. This modification leads, in 
 non-relativistic limit, to a modification in the Poisson equation 
wn in (43), which could be compatible with the Dark Matter. 
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This would allow us conjecture that Dark Matter could be inter-
preted as the non-relativistic limit of Dark Energy.

The modified form of Poisson equation (43) suggests a possible 
connection with the so-called MOND approach to gravity interac-
tions. In fact the first complete theory of MOND was constructed 
by Milgrom and Bekenstein in Ref. [24]. This theory is based on 
the lagrangian

L = − a2
0

8πG
f

⎛
⎝

∣∣∣ �∇φ

∣∣∣
a2

0

⎞
⎠ − ρφ, (44)

where φ is the gravitational potential (meaning that for a test 
particle �a = −�∇φ), and ρ denotes the matter mass density. The 
corresponding equation for φ is given by

�∇ ·
⎡
⎣μ

⎛
⎝

∣∣∣ �∇φ

∣∣∣
a0

�∇φ

⎞
⎠

⎤
⎦ = 4πGρ, (45)

where μ(
√

y) = df (y)/dy, which can be written as

μ∇2φ = 4πGρ − �∇μ · �∇φ. (46)

Comparing this last equation with equation (43), we can see 
that in some particular cases the MOND approach to gravity could 
coincide with the modified Poisson equation (43).
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