41,303 research outputs found

    Room temperature ferromagnetic-like behavior in Mn-implanted and post-annealed InAs layers deposited by Molecular Beam Epitaxy

    Get PDF
    We report on the magnetic and structural properties of Ar and Mn implanted InAs epitaxial films grown on GaAs (100) by Molecular Beam Epitaxy (MBE) and the effect of Rapid Thermal Annealing (RTA) for 30 seconds at 750C. Channeling Particle Induced X- ray Emission (PIXE) experiments reveal that after Mn implantation almost all Mn atoms are subsbtitutional in the In-site of the InAs lattice, like in a diluted magnetic semiconductor (DMS). All of these samples show diamagnetic behavior. But, after RTA treatment the Mn-InAs films exhibit room-temperature magnetism. According to PIXE measurements the Mn atoms are no longer substitutional. When the same set of experiments were performed with As as implantation ion all of the layers present diamagnetism without exception. This indicates that the appearance of room-temperature ferromagnetic-like behavior in the Mn-InAs-RTA layer is not related to lattice disorder produce during implantation, but to a Mn reaction produced after a short thermal treatment. X-ray diffraction patterns (XRD) and Rutherford Back Scattering (RBS) measurements evidence the segregation of an oxygen deficient-MnO2 phase (nominally MnO1.94) in the Mn-InAs-RTA epitaxial layers which might be on the origin of room temperature ferromagnetic-like response observed.Comment: 16 pages, 5 figures. Acepted in J. Appl. Phy

    Strangeness on the nucleon

    Get PDF
    Observables from parity violation in elastic electron-nucleon scattering and neutral current quasi-elastic neutrino-nucleus scattering are employed as tools to improve the current knowledge on the strangeness content in the nucleon.Comment: Proceedings of International Scientific Meeting on Nuclear Physics, 9-13th September 2012. La R\'abida, Huelva, Spai

    Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    Get PDF
    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.Comment: 10 pages, 4 figure

    Marginal Fermi liquid behavior from 2d Coulomb interaction

    Get PDF
    A full, nonperturbative renormalization group analysis of interacting electrons in a graphite layer is performed, in order to investigate the deviations from Fermi liquid theory that have been observed in the experimental measures of a linear quasiparticle decay rate in graphite. The electrons are coupled through Coulomb interactions, which remain unscreened due to the semimetallic character of the layer. We show that the model flows towards the noninteracting fixed-point for the whole range of couplings, with logarithmic corrections which signal the marginal character of the interaction separating Fermi liquid and non-Fermi liquid regimes.Comment: 7 pages, 2 Postscript figure

    An explanation of the Δ5/2−(1930)\Delta_{5/2^{-}}(1930) as a ρΔ\rho\Delta bound state

    Full text link
    We use the ρΔ\rho\Delta interaction in the hidden gauge formalism to dynamically generate N∗N^{\ast} and Δ∗\Delta^{\ast} resonances. We show, through a comparison of the results from this analysis and from a quark model study with data, that the Δ5/2−(1930),\Delta_{5/2^{-}}(1930), Δ3/2−(1940)\Delta_{3/2^{-}}(1940) and Δ1/2−(1900)\Delta_{1/2^{-}}(1900) resonances can be assigned to ρΔ\rho\Delta bound states. More precisely the Δ5/2−(1930)\Delta_{5/2^{-}}(1930) can be interpreted as a ρΔ\rho\Delta bound state whereas the Δ3/2−(1940)\Delta_{3/2^{-}}(1940) and Δ1/2−(1900)\Delta_{1/2^{-}}(1900) may contain an important ρΔ\rho\Delta component. This interpretation allows for a solution of a long-standing puzzle concerning the description of these resonances in constituent quark models. In addition we also obtain degenerate JP=1/2−,3/2−,5/2−J^{P}=1/2^{-},3/2^{-},5/2^{-} N∗N^{*} states but their assignment to experimental resonances is more uncertain.Comment: 19 pags, 8 fig
    • 

    corecore