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Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction
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A full, nonperturbative renormalization group analysis of interacting electrons in a graphite layer is per-
formed, in order to investigate the deviations from Fermi-liquid theory that have been observed in the experi-
mental measures of a linear quasiparticle decay rate in graphite. The electrons are coupled through Coulomb
interactions, which remain unscreened due to the semimetallic character of the layer. We show that the model
flows towards the noninteracting fixed point for the whole range of couplings, with logarithmic corrections
which signal the marginal character of the interaction separating Fermi-liquid and non-Fermi-liquid regimes.
[S0163-182609)50204-X

During recent years there has been important progress iscreening requires the vanishing of the density of states at
understanding the properties of quantum electron liquids ithe Fermi level. Semimetals show this behavior, while re-
dimensionD < 3. One of the most fruitful approaches in this taining a gapless electronic spectrum. The existence of a
respect springs from the use of renormalization gréR() well-defined continuum at low energies permits the existence
methods, in which the different liquids are characterized b)Pf n?nt”fv'ﬁl_ Sﬁfi“dng pr.opertt;eg‘.hThe mg_st remarkellbkr-:-] ex- f
several fixed points controlling the low-energy properties.ampe. of this kind Is given by the two-dimensional sheet of
The Landau theory of the Fermi liquid in dimensiar>1 graphite, which has a vanishing density of states at the Fermi

can bo taken as a paradiam of the success of this proaram. vel1® Recent photoemission experiments in graphite, at in-
P gm o - IS program. &, e giate energies, show a decay rate of quasiparticles pro-
has been shown that, at least in the continuum limit, a syste

rBortional to their energy® This represents a clear deviation

with isotropic Fermi surface and regular interactions is cayith respect to the behavior in metals, which follow the con-

pable of developing a fixed point in which the interaction enional Fermi-liquid picture with quasiparticle lifetimes
remains stable in the mfraréq. - . _ proportional to the inverse of the energy square, with, at
The question of whether different critical points may arisemost, logarithmic corrections. A description in terms of an
at dimensionD =2 is now a subject of debafe® From the effective field theory model has shown that the electronic
perspective of the RG approach, one of the premises leadirigiteractions within the graphite layers are mainly responsible
to the Fermi-liquid fixed point should be relaxed in order tofor the anomalous properties measured in the experifdent.
flow to a different universality class. In the case of models We apply RG techniques to investigate whether the men-
proposed to understand the electronic properties of coppetioned anomalous behavior can be understood as a marginal
oxide superconductors, the high anisotropy of the Fermileviation from Fermi-liquid theory, or rather it points to-
surfac& may play an important role in the anomalous behav-wards a different universality class realized in the graphite
ior of the normal as well as of the superconducting stade.  sheet. We recall that the low-energy electronic excitations of
the other hand, a possible source of non-Fermi-liquid behawthe latter at half-filling are concentrated around two Fermi
ior may arise in systems with singular interactinis the  Points at the corners of the hexagonal Brillouin zone, where
case of the Coulomb interaction screened by the Fermi sea,tB€ dispersion relation is well approximated by two cones in
solution by means of bosonization methods has shown thgntact at the apex. The effective field theory is given there-
no departures from Fermi-liquid behavior ariseDat 2 and fore by a pair of Dirac fermions, with a Coulomb potential

32 It has been also shown for the conventional screenqu"jlt remains unsqreeped due to th? vanishing 'density of
interaction that only potentials as singular A&q) States at tf;}e I?ermfl3 points. The effective Hamiltonian can be
~1/|q|?® 2 can lead to a different electron liquid® The written in the for
system of electrons with gauge interactions is quite different )
in that respect. It is known that in this case the system shows H=- |UFf d’r¥*(r)o-V¥(r)
non-Fermi-liquid behavior foD <3, manifested in proper-
ties like the specific heat or anomalous electron field e 9 P
dimensions! 13 +ﬁf d rlf dora¥ 7 (ry)

In the present work, we address the applicability of the
notion of Fermi-liquid fixed point to two-dimensional sys-

1
- +
tems with unscreened Coulomb interaction. The absence of x(ry) [ri—r PR P(ra), @)

2l
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where W(r) is a two-dimensional Dirac spinor andr > 2

o s : e k

=(oy,0y). Such effective field theory provides a good start- ik, o) =i — ——. (4
ing point for a RG analysis since, given that the scaling 8 JZk2—w?

dimension of thel(r) field is — 1 (in length unit$, the four-
fermion Coulomb interaction turns out to be scale invariantOne can check that the higher-order correctionkl {t, w,)
at this level, with a dimensionless coupling consteht are independent oE., after renormalization of the three-

In order to address the existence of a different universalitypoint vertex and the electron self-energy. This comes from
class, besides the trivial noninteracting phase, a nonperturb&ie fact that, after subtraction of all the divergent depen-
tive approach has to be adopted, since the former can only tences ork; coming from these objects, the structure of the
revealed by a nontrivial fixed point in coupling constantFeynman diagrams foil remains the same as for the one-
space. In the following, we will implement a GW approxi- loop order:® We may consider formally the resu#t) as the
mation in the computation of the self-energy properties. Thideading order in a N approximation. The fact thdfl does
is more easily achieved in the present model by replacing theot scale itself withE, ensures that subleading corrections
four-fermion term in Eq(1) by the interaction with an aux- do not become relevant as the cutoff approaches the Fermi
iliary scalar field used to propagate the Coulomb interactionlevel, and that one can rely on the random-phase approxima-

The effective Hamiltonian can be rewritten in the form tion (RPA) for the low-energy description of the theory.
By using the dressed propagator of the interaction in the
RPA,

H=—ivFJ d’r¥(r)o-V¥(r) _

—i
<¢(k,ﬂ)k)¢(_k,_(x)k)>: 5 ’ (5)

2, + e k2
+ef dTrvT(r)W(r)eé(r), 2 2|k|+ —

8 \/U,Z:kz— wﬁ

one is able to perform a partial sum of perturbation theory in
the computation of the self-ener@y(k,w,) and the three-
point vertexI' (K, wy ;p,wp). These two objects are related,
- (€)) since as long as the scalar potentfais introduced by the
r=r| minimal prescriptiori do—idy+e¢, a Ward identity similar
to that of quantum electrodynamics can be derived:

In this framework we will introduce the GW approxima-
tion by taking into account the quantum corrections to¢he
propagator due to particle-hole excitations of the Fermi sea.
This kind of approximation has proven to be adequate to the
description of the crossover from Fermi-liquid to Luttinger- Thus the renormalization df exactly matches the electron
liquid behavior upon lowering the dimension fram=2 to ~ wave function renormalization as computed from the self-
1, capturing the relevant physical processes in the electro@nergy =. This leads to the relation between charge and
system'® Therefore, it seems also appropriate to uncover anyb-field renormalization factor&.Z,=1. The no-scaling of
possible fixed point, different from that of Fermi-liquid the polarization tensor means thag=1, which in turn im-
theory, in the case of the system with unscreened Coulomplies the absence of charge renormalization in the model.
interaction. We focus then on the self-energy in GW approximation

The perturbative analysis of our model shows, in fact, the
existence of a free fixed point that is stable in the infrared . d’p do ox—ow+veo-(k—p)
limit.2* This can be understood from the nontrivial scaling of IE(k,wk)=l292f 297 02(K—1)?— (o — )2
the model with respect to variations of the bandwidth cutoff (2m)? 2m vp(k=p)"= (0~ )
E., that is needed to regulate the divergent contribution of —i

where the scalar fielg(r) has the propagator

1
(T(re(r' ,t))=—a(t—t)

J
a_wl(z(krwk):r(kywk;kawk)- (6)

virtual processes to observable quantities. In the perturbative X 5 5 . )
regime the Fermi velocity - grows steadily as the cutolf, 2|p|+ e P
is reduced and, as long as the electron chargenot renor- 8 W/U;i:pZ_wZ

malized at the one-loop level, the effective coupling constant

e?/v flows to zero in the low-energy effective theory. The imaginary part of the self-energy coming from E#).
The most interesting point, however, concerns the analyhas been computed elsewhéfén this paper we are inter-

sis of the model away from the perturbative regime. Withested in the computation of the real partXfk, w,), which

regard to the direct application to the graphite system therovides information about the nontrivial scaling of the qua-

weak coupling results are of little use, since the bare cousiparticle weight and the Fermi velocity in the low-energy

pling in the graphite sheet has an estimated vaiti limit.

~10. Some possibly relevant effects, like, for instance, the The terms linear inw, andk in the self-energy7) display

renormalization of the quasiparticle weight, have to be cona logarithmic dependence on the high-energy cuteff

sistently understood in a nonperturbative framework. Upon integration of the frequency from~ to + < and plac-
The polarization tensor built out of particle-hole processesng the bandwidth cutoffE, in momentum spacey¢|p|

is given by <E., the coefficients of the logarithmically divergent con-
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tributions can be computed in terms of elementary functions
of g=e?/(16v¢). The renormalization of the electron propa- 5
gator turns out to be given by
- S~z71 k 4
G G, = (wy—vro-k)
3
8 ( arcsing #
-Z oy—|g?+(2-g?)| 1- ——| |logE
k,n,Z g g g\/l——gz gk, 2
81[1—g%2
~Z lw—~ —1|logE !
Ko g<\/mz 9E. \
8 1-g> . 2 4 6 8
+Z Wpok—|1— arcsing | log E,. -logE
w2 g
FIG. 1. Flow of the coupling constant for different bare values.
41
—Z YWrok—=(1—J1—g?logE,, (8)
F T g ¢ sured before integration of high-energy modes. The Fermi

velocity v flows to higher values in the infrared, and the
density of states around the Fermi energy decreases, as a
consequence of screening effects. This ensures the consis-
Vyad Eo) =2V (9)  tency of the weak-coupling phase, where the results of per-
turbation theory become increasingly reliable in the low-
In the RG approach, we require the cutoff independencenergy limit. However, the most important point concerns
of the renormalized Green function, since this object leads tthe possible existence of a different phase at large values of
observable quantities in the quantum theory. For this purg. In this respect, the flow equatiori$0) and (12) can be
pose,Z and v have to be understood as cutoff-dependentanalytically continued to valueg>1, by simple use of the
effective parameters, that reflect the behavior of the quanturformula arccog=ilog(z—iy1—2z?). The flows of the cou-
theory asE.—0 and more states are integrated out frompling constant and the electron wave function are then dif-
high-energy shells of the band. In this respect, the parametéerentiable acrosg=1, which shows that the apparent sin-
ve that appears in the-field propagator is also supposed to gularity at this point has no physical meaning.
scale with the cutofE. . This agrees with the self-consistent ~ The right-hand side of Eq12) is a monotonous function
character of the GW approximation, in which the parametersf g, taking into account the mentioned analytic continua-
that enter in the polarization tensor have to match those oltion. This means that there is no phase different from that of
tained from the renormalized quasiparticle propagatorthe perturbative regime, and that the strong-coupling regime
Phrased in the RG framework, the parametein the boson is connected to it through RG transformations. The RG flow
propagator has to approach,BBs—0, the value of the Fermi represented in Fig. 1 shows that the perturbative regime is

wherezZ? represents the scale of the bare electron field com
pared to that of the cutoff-independent electron field

velocity at the fixed point of the model. attained at low energies, starting from fairly large bare values
We get the RG flow equations of the coupling constant.
The present analysis is relevant to the phenomenology of
d 2—g? arccog 81 the graphite layers. It shows that, even in such a system with
Ecgg 109Z(Ed) =~ 2+Tﬁ +;§: unconventional quasiparticle lifetimes, the low-energy be-
¢ 9 (10 havior is governed by a fixed point which can be described
as a Fermi liquid, aZ tends to a constant in the infraréske
Fig. 2), unlike for the line of nontrivial fixed points which
EciUF(Ec) =— —vg| 1+ M) + iUFE_ characterize Luttinger liquids. On the other hand, the scaling
dE ™ gvl—-¢?/ @ '@ behavior near the fixed point should give a more precise

(11 estimate of the quasiparticle lifetimes measured experimen-
tally. Taking into account the results of Ref. 17 and the flow
Given that the electron chargeis not renormalized, we of the coupling constant in the infrared, the imaginary part of
may write down the flow equation for the effective coupling the self-energy has to behave in the form dmg’w

constantg=e?/(16v): ~wllog¥(w). This expression of Il is consistent with the
low-energy limit of the real part RE~g’wlog(w)
d _ 8 arccoy| 4 ~wllog(w), as this actually matches the asymptotic behavior
Ecd_ECg(EC)_ 2197 1-¢2 I 12 gictated by the Kramers-Kronig relation. We note, however,

that the logarithmic correction to the linear quasiparticle de-
In the weak-coupling regime, one may check that the renoreay rate cannot be discerned at present in the experiments, as
malization of both the Fermi velocity and the electron wavethese only cover one order of magnitude in energy about the
function takes place in the expected direction. The quasipaiFermi level®
ticle weightZ at smallg is smaller than the bare value mea-  Our study stresses the anomalous screening properties of
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1 To summarize, semimetals described by the two-
dimensional Dirac equation, such as a graphite layer, show
significant differences with respect to the properties of stan-
08 dard Fermi liquids with(screenegd Coulomb interactions. In
the present problem, the quasiparticle lifetime goes like
~log*(w)/w, while the enhancement of the Fermi velocity

0.6 e o ! Lo ;
implies the vanishing of the effective coupling in the infra-

z red. We expect the same behavior in three-dimensional zero-

04 gap semiconductors, which are also described by an effective

Dirac equation.

In the context of more general long-range interactions, the
02 system with a Dirac sea also behaves differently with respect
to the conventional Fermi sea, as in the former an interaction
V(q)~1/q|** < already departs from the Fermi-liquid uni-
10 20 30 40 versality class fore>0. In our RG framework, the interac-

“logE tion becomes relevant no matter how smathay be, and a
nontrivial fixed point can be found away from the origin
within the e expansion.

The logarithmic behavior that we have found also affects
) o ) ) ~ some thermodynamic quantities like the specific heat or the
the Coulomb interaction in Iow—dlmen3|_onal §ystems. Th'ssusceptibility, which pick up logarithmic corrections &s
fact has also been put forward recently in a different frame-_, 5 These are the signature of the marginal character of the
work, pointing out that in one- and two-dimensional system§peraction, which has in our model the precise degree of

the screening of the long-range interactions goes in the d%ingularity to separate regimes with Fermi-liquiek(0) and
rection of reducing the electron correlatidisin the RG non-Fermi-liquid behavior > 0).

approach we see how this effect arises under the form of a
renormalization o . Such nontrivial scaling of the Fermi We would like to thank C. Castellani for useful remarks
velocity in the infrared seems to be also present in systemsn the paper. This work has been partially supported by the

FIG. 2. Wave function renormalization for bare coupling con-
stantg=>5 (thick line) andg=1 (thin line).

with gauge interactiont*3 Ministerio de Educacio y Cultura Grant No. PB96-0875.

IR. Shankar, Rev. Mod. Phy&6, 129 (1994. 133, Chakravarty, R. E. Norton, and O. F. Syljuasen, Phys. Rev.

2p. W. Anderson, Phys. Rev. Lett4, 1839 (1990; 65, 2306 Lett. 74, 1423(1995.
(1990. 14J. Gonzéez, F. Guinea, and M. A. H. Vozmediano, Mod. Phys.

3J. Feldman, M. Salmhofer, and E. Trubowitz, J. Stat. PBys. Lett. B 7, 1593(1994); Nucl. Phys. B424, 595(1994; J. Low
1209(1996. Temp. Phys99, 287 (1994.

4K. Yokoyama and H. Fukuyama, J. Phys. Soc. Jp6. 529  °J. Gonzéez, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B
(1999. 406, 771(1993.

5C. J. Halboth and W. Metzner, Phys. Rev5B, 8873(1998. 165, Xuet al, Phys. Rev. Lett76, 483(1996.

67.-X. Shenet al, Science267, 343 (1995; K. Gofron etal,  7J. Gonzéez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.
Phys. Rev. Lett73, 3302(1994). Lett. 77, 3589(1996.

7J. Gonzéez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. 1®We stick from now on to one of the Fermi points, which provides
Lett. 79, 3514(1997. all the relevant physics since the Coulomb interaction becomes

8p.-A. Bares and X.-G. Wen, Phys. Rev.4B, 8636(1993. singular at small momentum transfer.

9A. Houghton, H.-J. Kwon, J. B. Marston, and R. Shankar, J.1°C. Ccastellani, C. Di Castro, and W. Metzner, Phys. Rev. [7&t.
Phys.: Condens. Mattds;, 4909(1994). 316(19949.

10C. castellani and C. Di Castro, Physica285-240 99 (1994; C.  ?°Technically, the Feynman diagrams fir may be computed in
Castellani, C. Di Castro, and A. Maccarone, Phys. Reh5B dimensional regularization, giving rise to a well-behavied
2676(1997). function of half-integer negative argument.

113, Gan and E. Wong, Phys. Rev. Létl, 4226(1993. 213. van den Brink and G. A. Sawatzky, cond-mat/9802@B%ub-

2¢. Nayak and F. Wilczek, Nucl. Phys. 817, 359 (1994). lished.



