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Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction
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A full, nonperturbative renormalization group analysis of interacting electrons in a graphite layer is per-
formed, in order to investigate the deviations from Fermi-liquid theory that have been observed in the experi-
mental measures of a linear quasiparticle decay rate in graphite. The electrons are coupled through Coulomb
interactions, which remain unscreened due to the semimetallic character of the layer. We show that the model
flows towards the noninteracting fixed point for the whole range of couplings, with logarithmic corrections
which signal the marginal character of the interaction separating Fermi-liquid and non-Fermi-liquid regimes.
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During recent years there has been important progres
understanding the properties of quantum electron liquids
dimensionD,3. One of the most fruitful approaches in th
respect springs from the use of renormalization group~RG!
methods, in which the different liquids are characterized
several fixed points controlling the low-energy properti
The Landau theory of the Fermi liquid in dimensionD.1
can be taken as a paradigm of the success of this progra
has been shown that, at least in the continuum limit, a sys
with isotropic Fermi surface and regular interactions is
pable of developing a fixed point in which the interacti
remains stable in the infrared.1

The question of whether different critical points may ar
at dimensionD52 is now a subject of debate.2–5 From the
perspective of the RG approach, one of the premises lea
to the Fermi-liquid fixed point should be relaxed in order
flow to a different universality class. In the case of mod
proposed to understand the electronic properties of cop
oxide superconductors, the high anisotropy of the Fe
surface6 may play an important role in the anomalous beh
ior of the normal as well as of the superconducting state.7 On
the other hand, a possible source of non-Fermi-liquid beh
ior may arise in systems with singular interactions.8 In the
case of the Coulomb interaction screened by the Fermi se
solution by means of bosonization methods has shown
no departures from Fermi-liquid behavior arise atD52 and
3.9 It has been also shown for the conventional scree
interaction that only potentials as singular asV(q)
;1/uqu2D22 can lead to a different electron liquid.8,10 The
system of electrons with gauge interactions is quite differ
in that respect. It is known that in this case the system sh
non-Fermi-liquid behavior forD<3, manifested in proper
ties like the specific heat or anomalous electron fi
dimensions.11–13

In the present work, we address the applicability of t
notion of Fermi-liquid fixed point to two-dimensional sy
tems with unscreened Coulomb interaction. The absenc
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screening requires the vanishing of the density of state
the Fermi level. Semimetals show this behavior, while
taining a gapless electronic spectrum. The existence o
well-defined continuum at low energies permits the existe
of nontrivial scaling properties.14 The most remarkable ex
ample of this kind is given by the two-dimensional sheet
graphite, which has a vanishing density of states at the Fe
level.15 Recent photoemission experiments in graphite, at
termediate energies, show a decay rate of quasiparticles
portional to their energy.16 This represents a clear deviatio
with respect to the behavior in metals, which follow the co
ventional Fermi-liquid picture with quasiparticle lifetime
proportional to the inverse of the energy square, with,
most, logarithmic corrections. A description in terms of
effective field theory model has shown that the electro
interactions within the graphite layers are mainly respons
for the anomalous properties measured in the experimen17

We apply RG techniques to investigate whether the m
tioned anomalous behavior can be understood as a mar
deviation from Fermi-liquid theory, or rather it points to
wards a different universality class realized in the graph
sheet. We recall that the low-energy electronic excitations
the latter at half-filling are concentrated around two Fer
points at the corners of the hexagonal Brillouin zone, wh
the dispersion relation is well approximated by two cones
contact at the apex. The effective field theory is given the
fore by a pair of Dirac fermions, with a Coulomb potenti
that remains unscreened due to the vanishing density
states at the Fermi points. The effective Hamiltonian can
written in the form18

H52 ivFE d2rC1~r !s–“C~r !

1
e2

8p E d2r 1E d2r 2C1~r1!

3C~r1!
1

ur12r2u
C1~r2!C~r2!, ~1!
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where C~r ! is a two-dimensional Dirac spinor ands
[(sx ,sy). Such effective field theory provides a good sta
ing point for a RG analysis since, given that the scal
dimension of theC~r ! field is 21 ~in length units!, the four-
fermion Coulomb interaction turns out to be scale invaria
at this level, with a dimensionless coupling constante2.

In order to address the existence of a different universa
class, besides the trivial noninteracting phase, a nonpertu
tive approach has to be adopted, since the former can on
revealed by a nontrivial fixed point in coupling consta
space. In the following, we will implement a GW approx
mation in the computation of the self-energy properties. T
is more easily achieved in the present model by replacing
four-fermion term in Eq.~1! by the interaction with an aux
iliary scalar field used to propagate the Coulomb interacti
The effective Hamiltonian can be rewritten in the form

H52 i vFE d2rC1~r !s–“C~r !

1eE d2rC1~r !C~r !f~r !, ~2!

where the scalar fieldf~r ! has the propagator

i ^Tf~r ,t !f~r 8,t8!&5
1

4p
d~ t2t8!

1

ur2r 8u
. ~3!

In this framework we will introduce the GW approxima
tion by taking into account the quantum corrections to thef
propagator due to particle-hole excitations of the Fermi s
This kind of approximation has proven to be adequate to
description of the crossover from Fermi-liquid to Luttinge
liquid behavior upon lowering the dimension fromD52 to
1, capturing the relevant physical processes in the elec
system.19 Therefore, it seems also appropriate to uncover
possible fixed point, different from that of Fermi-liqui
theory, in the case of the system with unscreened Coulo
interaction.

The perturbative analysis of our model shows, in fact,
existence of a free fixed point that is stable in the infra
limit.14 This can be understood from the nontrivial scaling
the model with respect to variations of the bandwidth cut
Ec , that is needed to regulate the divergent contribution
virtual processes to observable quantities. In the perturba
regime the Fermi velocityvF grows steadily as the cutoffEc
is reduced and, as long as the electron chargee is not renor-
malized at the one-loop level, the effective coupling const
e2/vF flows to zero in the low-energy effective theory.

The most interesting point, however, concerns the an
sis of the model away from the perturbative regime. W
regard to the direct application to the graphite system
weak coupling results are of little use, since the bare c
pling in the graphite sheet has an estimated valuee2/vF
;10. Some possibly relevant effects, like, for instance,
renormalization of the quasiparticle weight, have to be c
sistently understood in a nonperturbative framework.

The polarization tensor built out of particle-hole proces
is given by
-
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iP~k,vk!5 i
e2

8

k2

AvF
2k22vk

2
. ~4!

One can check that the higher-order corrections toP(k,vk)
are independent ofEc , after renormalization of the three
point vertex and the electron self-energy. This comes fr
the fact that, after subtraction of all the divergent depe
dences onEc coming from these objects, the structure of t
Feynman diagrams forP remains the same as for the on
loop order.20 We may consider formally the result~4! as the
leading order in a 1/N approximation. The fact thatP does
not scale itself withEc ensures that subleading correctio
do not become relevant as the cutoff approaches the F
level, and that one can rely on the random-phase approxi
tion ~RPA! for the low-energy description of the theory.

By using the dressed propagator of the interaction in
RPA,

^f~k,vk!f~2k,2vk!&5
2 i

2uku1
e2

8

k2

AvF
2k22vk

2

, ~5!

one is able to perform a partial sum of perturbation theory
the computation of the self-energyS(k,vk) and the three-
point vertexG(k,vk ;p,vp). These two objects are relate
since as long as the scalar potentialf is introduced by the
minimal prescriptioni ]0→ i ]01ef, a Ward identity similar
to that of quantum electrodynamics can be derived:

]

]vk
S~k,vk!5G~k,vk ;k,vk!. ~6!

Thus the renormalization ofG exactly matches the electro
wave function renormalization as computed from the se
energy S. This leads to the relation between charge a
f-field renormalization factorsZeZf51. The no-scaling of
the polarization tensor means thatZf51, which in turn im-
plies the absence of charge renormalization in the mode

We focus then on the self-energy in GW approximatio

iS~k,vk!5 i2e2E d2p

~2p!2

dv

2p

vk2v1vFs–~k2p!

vF
2~k2p!22~vk2v!2

3
2 i

2upu1
e2

8

p2

AvF
2p22v2

. ~7!

The imaginary part of the self-energy coming from Eq.~7!
has been computed elsewhere.17 In this paper we are inter
ested in the computation of the real part ofS(k,vk), which
provides information about the nontrivial scaling of the qu
siparticle weight and the Fermi velocity in the low-ener
limit.

The terms linear invk andk in the self-energy~7! display
a logarithmic dependence on the high-energy cutoffEc .
Upon integration of the frequency from2` to 1` and plac-
ing the bandwidth cutoffEc in momentum space,vFupu
,Ec , the coefficients of the logarithmically divergent co
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tributions can be computed in terms of elementary functi
of g[e2/(16vF). The renormalization of the electron prop
gator turns out to be given by

1

G
5

1

G0
2S'Z21~vk2vFs–k!

2Z21vk

8

p2
Xg21~22g2!S 12

arcsing

gA12g2D ClogEc

2Z21vk

8

p

1

g S 12g2/2

A12g2
21D logEc

1Z21vFs–k
8

p2 S 12
A12g2

g
arcsingD logEc

2Z21vFs–k
4

p

1

g
~12A12g2!logEc , ~8!

whereZ1/2 represents the scale of the bare electron field co
pared to that of the cutoff-independent electron field

Cbare~Ec!5Z1/2C. ~9!

In the RG approach, we require the cutoff independe
of the renormalized Green function, since this object lead
observable quantities in the quantum theory. For this p
pose,Z and vF have to be understood as cutoff-depend
effective parameters, that reflect the behavior of the quan
theory asEc→0 and more states are integrated out fro
high-energy shells of the band. In this respect, the param
vF that appears in thef-field propagator is also supposed
scale with the cutoffEc . This agrees with the self-consiste
character of the GW approximation, in which the paramet
that enter in the polarization tensor have to match those
tained from the renormalized quasiparticle propaga
Phrased in the RG framework, the parametervF in the boson
propagator has to approach, asEc→0, the value of the Ferm
velocity at the fixed point of the model.

We get the RG flow equations

Ec

d

dEc
logZ~Ec!52

8

p2 S 21
22g2

g

arccosg

A12g2 D 1
8

p

1

g
,

~10!

Ec

d

dEc
vF~Ec!52

8

p2 vFS 11
arccosg

gA12g2D 1
4

p
vF

1

g
.

~11!

Given that the electron chargee is not renormalized, we
may write down the flow equation for the effective couplin
constantg5e2/(16vF):

Ec

d

dEc
g~Ec!5

8

p2 S g1
arccosg

A12g2 D 2
4

p
. ~12!

In the weak-coupling regime, one may check that the ren
malization of both the Fermi velocity and the electron wa
function takes place in the expected direction. The quasi
ticle weightZ at smallg is smaller than the bare value me
s

-
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sured before integration of high-energy modes. The Fe
velocity vF flows to higher values in the infrared, and th
density of states around the Fermi energy decreases,
consequence of screening effects. This ensures the co
tency of the weak-coupling phase, where the results of p
turbation theory become increasingly reliable in the lo
energy limit. However, the most important point concer
the possible existence of a different phase at large value
g. In this respect, the flow equations~10! and ~12! can be
analytically continued to valuesg.1, by simple use of the
formula arccosz5i log(z2iA12z2). The flows of the cou-
pling constant and the electron wave function are then
ferentiable acrossg51, which shows that the apparent si
gularity at this point has no physical meaning.

The right-hand side of Eq.~12! is a monotonous function
of g, taking into account the mentioned analytic continu
tion. This means that there is no phase different from tha
the perturbative regime, and that the strong-coupling reg
is connected to it through RG transformations. The RG fl
represented in Fig. 1 shows that the perturbative regim
attained at low energies, starting from fairly large bare valu
of the coupling constant.

The present analysis is relevant to the phenomenolog
the graphite layers. It shows that, even in such a system
unconventional quasiparticle lifetimes, the low-energy b
havior is governed by a fixed point which can be describ
as a Fermi liquid, asZ tends to a constant in the infrared~see
Fig. 2!, unlike for the line of nontrivial fixed points which
characterize Luttinger liquids. On the other hand, the sca
behavior near the fixed point should give a more prec
estimate of the quasiparticle lifetimes measured experim
tally. Taking into account the results of Ref. 17 and the flo
of the coupling constant in the infrared, the imaginary part
the self-energy has to behave in the form ImS;g2v
;v/log2(v). This expression of ImS is consistent with the
low-energy limit of the real part ReS;g2v log(v)
;v/log(v), as this actually matches the asymptotic behav
dictated by the Kramers-Kronig relation. We note, howev
that the logarithmic correction to the linear quasiparticle d
cay rate cannot be discerned at present in the experimen
these only cover one order of magnitude in energy about
Fermi level.16

Our study stresses the anomalous screening propertie

FIG. 1. Flow of the coupling constant for different bare value
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the Coulomb interaction in low-dimensional systems. T
fact has also been put forward recently in a different fram
work, pointing out that in one- and two-dimensional syste
the screening of the long-range interactions goes in the
rection of reducing the electron correlations.21 In the RG
approach we see how this effect arises under the form
renormalization ofvF . Such nontrivial scaling of the Ferm
velocity in the infrared seems to be also present in syst
with gauge interactions.12,13

FIG. 2. Wave function renormalization for bare coupling co
stantg55 ~thick line! andg51 ~thin line!.
v
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-
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To summarize, semimetals described by the tw
dimensional Dirac equation, such as a graphite layer, sh
significant differences with respect to the properties of st
dard Fermi liquids with~screened! Coulomb interactions. In
the present problem, the quasiparticle lifetime goes l
; log2(v)/v, while the enhancement of the Fermi veloci
implies the vanishing of the effective coupling in the infr
red. We expect the same behavior in three-dimensional z
gap semiconductors, which are also described by an effec
Dirac equation.

In the context of more general long-range interactions,
system with a Dirac sea also behaves differently with resp
to the conventional Fermi sea, as in the former an interac
V(q);1/uqu11e already departs from the Fermi-liquid un
versality class fore.0. In our RG framework, the interac
tion becomes relevant no matter how smalle may be, and a
nontrivial fixed point can be found away from the orig
within the e expansion.

The logarithmic behavior that we have found also affe
some thermodynamic quantities like the specific heat or
susceptibility, which pick up logarithmic corrections asT
→0. These are the signature of the marginal character of
interaction, which has in our model the precise degree
singularity to separate regimes with Fermi-liquid (e,0) and
non-Fermi-liquid behavior (e.0).
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