203 research outputs found

    Time-dependent evolution of two coupled Luttinger liquids

    Get PDF
    We consider two disconnected Luttinger liquids which are coupled at t=0t=0 through chiral density-density interactions. Both for t<0t<0 and t≄0t \geq 0 the system is exactly solvable by means of bosonization and this allows to evaluate analytically the time-dependence of correlation functions. We find that in the long-time limit the critical exponent governing the one-particle correlation function differs from the exponent dictated by the equilibrium ground state of the coupled system. We also discuss how this reflects on some physical quantities which are accessible in real experiments.Comment: 6 pages, 1 eps fig, revised version accepted for publication in Phys. Rev.

    A generalized drift-diffusion model for rectifying Schottky contact simulation

    Get PDF
    We present a discussion on the modeling of Schottky barrier rectifying contacts (diodes) within the framework of partial-differential-equation-based physical simulations. We propose a physically consistent generalization of the drift-diffusion model to describe the boundary layer close to the Schottky barrier where thermionic emission leads to a non-Maxwellian carrier distribution, including a novel boundary condition at the contact. The modified drift-diffusion model is validated against Monte Carlo simulations of a GaAs device. The proposed model is in agreement with the Monte Carlo simulations not only in the current value but also in the spatial distributions of microscopic quantities like the electron velocity and concentratio

    Els Lipoides i l'anafilĂ xia

    Get PDF

    Suppression of electron-electron repulsion and superconductivity in Ultra Small Carbon Nanotubes

    Full text link
    Recently, ultra-small-diameter Single Wall Nano Tubes with diameter of ∌0.4nm \sim 0.4 nm have been produced and many unusual properties were observed, such as superconductivity, leading to a transition temperature Tc∌15oKT_c\sim 15^oK, much larger than that observed in the bundles of larger diameter tubes. By a comparison between two different approaches, we discuss the issue whether a superconducting behavior in these carbon nanotubes can arise by a purely electronic mechanism. The first approach is based on the Luttinger Model while the second one, which emphasizes the role of the lattice and short range interaction, is developed starting from the Hubbard Hamiltonian. By using the latter model we predict a transition temperature of the same order of magnitude as the measured one.Comment: 7 pages, 3 figures, to appear in J. Phys.-Cond. Ma

    An Instruction to Accelerate Software Caches

    Get PDF
    In this paper we propose an instruction to accelerate software caches. While DMAs are very efficient for predictable data sets that can be fetched before they are needed, they introduce a large latency overhead for computations with unpredictable access behavior. Software caches are advantageous when the data set is not predictable but exhibits locality. However, software caches also incur a large overhead. Because the main overhead is in the access function, we propose an instruction that replaces the look-up function of the software cache. This instruction is evaluated using the Multidimensional Software Cache and two multimedia kernels, GLCM and H.264 Motion Compensation. The results show that the proposed instruction accelerates the software cache access time by a factor of 2.6. This improvement translates to a 2.1 speedup for GLCM and 1.28 for MC, when compared with the IBM software cache

    The detached dust shells of AQ And, U Ant, and TT Cyg

    Full text link
    Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.Comment: Letter accepted for publication on the A&A Herschel Special Issu

    Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy

    Full text link
    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni2.16_{2.16}Mn0.84_{0.84}Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity ρ\rho and magnetization MM. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, (ρ5M−ρ7M)/ρ5M≈15(\rho_{\mathrm{5M}} - \rho_{\mathrm{7M}})/\rho _{\mathrm{5M}} \approx 15%, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase to the monoclinic 5M martensitic phase. We assume that this significant difference in ρ\rho between the martensitic phases is accounted for by nesting features of the Fermi surface. It is also suggested that the nesting hypothesis can explain the uncommon behavior of the resistivity at the martensitic transition, observed in stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX

    Stabilizing single atom contacts by molecular bridge formation

    Get PDF
    Gold-molecule-gold junctions can be formed by carefully breaking a gold wire in a solution containing dithiolated molecules. Surprisingly, there is little understanding on the mechanical details of the bridge formation process and specifically on the role that the dithiol molecules play themselves. We propose that alkanedithiol molecules have already formed bridges between the gold electrodes before the atomic gold-gold junction is broken. This leads to stabilization of the single atomic gold junction, as observed experimentally. Our data can be understood within a simple spring model.Comment: 14 pages, 3 figures, 1 tabl

    Galaxies and Cladistics

    Full text link
    The Hubble tuning fork diagram, based on morphology and established in the 1930s, has always been the preferred scheme for classification of galaxies. However, the current large amount of multiwavelength data, most often spectra, for objects up to very high distances, asks for more sophisticated statistical approaches. Interpreting formation and evolution of galaxies as a ?transmission with modification' process, we have shown that the concepts and tools of phylogenetic systematics can be heuristically transposed to the case of galaxies. This approach, which we call ?astrocladistics', has successfully been applied on several samples. Many difficulties still remain, some of them being specific to the nature of both galaxies and their diversification processes, some others being classical in cladistics, like the pertinence of the descriptors in conveying any useful evolutionary information.Comment: Talk given at the "12th Evolutionary Biology Meeting" held in Marseille, France, Sept. 24-26, 200
    • 

    corecore