
This version is available at https://doi.org/10.14279/depositonce-6782

Copyright applies. A non-exclusive, non-transferable and limited 
right to use is granted. This document is intended solely for 
personal, non-commercial use.

Terms of Use

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer 
Science. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-642-19137-4_14  
 
Azevedo, A., & Juurlink, B. (2011). An Instruction to Accelerate Software Caches. In Architecture of 
Computing Systems - ARCS 2011 (pp. 158–170). Springer Berlin Heidelberg.  
https://doi.org/10.1007/978-3-642-19137-4_14 

Azevedo, A., & Juurlink, B.

An Instruction to Accelerate Software 
Caches

Accepted manuscript (Postprint)Chapter in book   |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/155242427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An Instruction to Accelerate Software Caches

Arnaldo Azevedo1 and Ben Juurlink2

1 Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics,

and Computer Science
Delft University of Technology

Delft, the Netherlands
a.p.pereiradeazevedofilho@tudelft.nl

2 Embedded Systems Architectures
Faculty of Electrical Engineering and Computer Science

Technische Universität Berlin
Berlin, Germany

b.juurlink@tu-berlin.de

Abstract. In this paper we propose an instruction to accelerate soft-
ware caches. While DMAs are very efficient for predictable data sets that
can be fetched before they are needed, they introduce a large latency
overhead for computations with unpredictable access behavior. Software
caches are advantageous when the data set is not predictable but exhibits
locality. However, software caches also incur a large overhead. Because
the main overhead is in the access function, we propose an instruction
that replaces the look-up function of the software cache. This instruction
is evaluated using the Multidimensional Software Cache and two mul-
timedia kernels, GLCM and H.264 Motion Compensation. The results
show that the proposed instruction accelerates the software cache access
time by a factor of 2.6. This improvement translates to a 2.1 speedup for
GLCM and 1.28 for MC, when compared with the IBM software cache.

1 Introduction

The shift towards multicore architectures to increase performance while main-
taining within the power envelop has brought new challenges. One of these chal-
lenges is the design of a memory hierarchy tuned for power efficiency. Scratchpad
memories reappeared as a solution for the memory hierarchy because they are
very efficient in terms of power and performance [1]. DSPs, GPUs, and more no-
tably the Cell processor [2] are examples of high end multicore processors that
use scratchpad memories instead of regular caches.

Multimedia applications feature mostly predictable data sets and access pat-
terns, making it possible to transfer the necessary data before the computation.
These data transfers usually need to be explicitly exposed by the programmer.
This feature also makes possible to overlap computation with data transfers by
means of double buffering techniques. Scratchpad memories also have predictable



latencies. These characteristics make scratchpad memories a common choice for
embedded multimedia processors.

However, some multimedia applications do not feature predictable data sets
and access patterns. This is the case, for example, in Motion Compensation
(MC), Grey Level Co-occurrence Matrix (GLCM), Texture Mapping, and Com-
puted Tomography Processing. These applications present two significant prob-
lems for scratchpad memory based processors. The first problem is that the data
transfer cannot be overlapped with the computation. The process has to wait
for the data to be transferred to the scratchpad memory. The second problem is
that data locality cannot easily be exploited. It is difficult to keep track of the
memory area present in the scratchpad memory and new data must be requested
for each access. An alternative is the implementation of a software cache (SC).
SCs are software structures that offer the same functionality as hardware caches,
i.e., they store data that can be retrieved later upon requests [3]. Differently from
hardware caches, SCs can be easily customized to the characteristics of the ap-
plication. Implementing a software cache for the Cell processor is a current topic
of research in the community [4][5][6]. However, a software cache still has high
overhead, representing up to approximately 50% of the application execution
time [7]. Such overhead can harm the application performance when compared
with hand programmed DMA transfers. Such evaluations are not presented in
the cited works. In fact in [8] it was shown that for H.264 Motion Compensation
the software cache access time is higher than the actual memory transfer time.

In this paper, we propose to accelerate software caches using limited hard-
ware support. While traditional hardware caches are area and power consuming,
software caches have high processing overhead. Our aim is to close the per-
formance gap between software caches and hardware caches while keeping the
hardware overhead to a minimum. For this purpose we propose a cache look
up instruction called Lookup SC. The Lookup SC instruction is designed to en-
hance the performed of the MultiDimensional Software Cache proposed in [8].
The instruction calculates the tag and the set, searches for the tag in the tag
array, and returns a hit or miss flag together with a pointer to the address of
the requested data. In case of a miss, it is handled by software functions. For
the experimental evaluation we use the Cell SPE [9] processor core.

This paper is organized as follows. The targeted software cache is presented in
Section 2. The proposed instruction is detailed in Section 3 and the simulation
methodology is described in Section 4. Results are presented and analyzed in
Section 5 and conclusions are drawn in Section 6.

2 Multidimensional Software Cache

In this section, we briefly describe the Multidimensional Software Cache (MDSC),
introduced in [8]. The MDSC has the ability to mimic in the SC the logical or-
ganization of the accessed data structure. Specifically, cache blocks are 1- to
4-dimensional. Fig. 1 illustrates 1D, 2D, and 3D cache blocks storing a video
sequence composed of the Lena image. An 1D MDSC is similar to a conven-



(a) Eight 1D MDSC
blocks.

(b) Two 2D MDSC blocks,
four lines high.

(c) Two 3D MDSC blocks,
four lines high and 2 im-
ages deep.

Fig. 1. Examples of 1D, 2D, and 3D MDSC blocks.

tional hardware cache as its stores a number of consecutive bytes (from ex-
ternal memory) in each block, as depicted in Fig. 1(a). A 2D cache can be
used to store rectangular image areas, as depicted in Fig. 1(b). In this exam-
ple, four vertically consecutive segments of the image lines are allocated per
MDSC block. 3D MDSC blocks are a set of consecutive (in the third dimen-
sion) co-located (i.e., with the same vertical and horizontal coordinates) 2D
blocks. A 3D MDSC can be used to store areas of a sequence of video frames,
as depicted in Fig. 1(c). Similarly, a 4D MDSC, not depicted, can be used in
Multiview video processing or animated 3D representations as its blocks are sets
of 3D blocks. Besides multidimensional cache blocks, another characteristic of
the MDSC is the use of data structures indices to index the cache. So, instead
of consulting the cache as access SC(&datastructure[i][j]) we propose to access
it using access MDSC(&datastructure, i, j). Although similar, the second ac-
cess method makes explicit more information about the data structure and the
access.

This approach makes the MDSC differ from a regular cache in two ways.
First, it differs in the tag and set calculation. For the MDSC, the tag is a con-
catenation of each index and the set is a mask operation based on the indices.
The second difference is the format and the load of the multidimensional block.
The multidimensional block is formed by a set of cache lines gathered from
memory according to the number and size of the dimensions of the MDSC. For
a 2D MDSC, n cache lines represent a block. A strided access to the main mem-
ory is performed to load the consecutive lines. In our implementation the DMA
requests for each line are grouped in a so called DMA list.

The MDSC has two advantages over regular software caches, such as the
IBM Cell software cache (IBMSC) [3]. First, it reduces the memory latency by
grouping several memory requests, since a single DMA list operation has a lower
latency than several sequential DMAs [8]. The second advantage is that the
MDSC can be used to reduce the number of accesses to the SC [10]. As the
shape of the cache block and its boundaries are known, a single cache lockup is



necessary for accessing an entire block. After the first access, the remaining data
can be accessed using simple pointer arithmetic.

The MDSC is associated with a single data structure, i.e., for each data
structure there is a separated MDSC. However, there are two ways to cache
several data structures. If they have the same dimensions, it is possible to have
one SC that stores the different data structures. This is done by using an extra
dimension to represent the data structures, where each index value would point
to a different data structure. This works even if the data structures do not
have a contiguous address space as the base address of the data structure is a
parameter of the software cache access function. Otherwise, an MDSC for each
data structure is necessary.

3 MDSC Accelerator

One of the main drawbacks of a software cache is the runtime overhead. In [8],
it is shown that the MDSC access time is larger than the data transfer time for
H.264 Motion Compensation. To reduce the access time overhead for the MDSC
we propose an instruction to accelerate the MDSC access. In this section, we
describe the instruction and its functionality.

The proposed hardware module is implemented in the processor pipeline and
accessed through a new instruction. This new instruction, called Lookup SC,
receives the access parameters and returns if the data is currently present or
not and a pointer to where the data is stored in the SPE Local Store (LS). It
performs the following steps:

1. calculate the set based on the input indices, shifts and masks;
2. calculate the tag based on the input indices, shifts and masks;
3. check if the tag is present in the tag array;
4. calculate the offset of the data inside the cache block (can be done partially

in parallel with the previous steps);
5. if the tag is present, uses its position to calculate the address of the cache

block;
6. return the hit/miss flag, the position of the data, the tag, and the set and

the tag position.

In software these steps take about 45 cycles on the SPE. Although it is a small
number of cycles, since the lookup needs to be performed to access each data
value even this small cycle count leads to a significant performance penalty. The
actual reading and writing of data from/to main memory were excluded from
the hardware module to keep the hardware complexity and costs at a minimum
level. This is feasible because the MDSC yields high hit rate compared with
traditional caches.

This proposed hardware accelerator differs from a traditional hardware cache
in a number of ways. First, there is no need to perform the cache access in a
single or few cycles. The high performance cache lookup implementation present
in regular hardware caches can be replaced by a pipelined, more latency tolerant



structure integrated in the existing core datapath. Second, there are no hardware
handling of misses and no expensive replacement policies. These tradeoffs, while
not giving the best cache configuration, aim at keeping the hardware and power
consumption overheads at a minimum level while increasing the performance
compared to the complete software implementation.

The instruction has 3 operands: 2 input registers and one output register. The
first register contains a maximum of four 32-bit indices of the multidimensional
cache. 32-bit wide integers were chosen as this is the most common type for
loop indices, likely to be used to access the cache. The second input register is
used to pass the cache parameters. These parameters are the base address of
the software cache tag array in LS, the size of the cache block, the number of
sets, shifts and masks for each index, and the size in bytes of each dimension.
A 128-bit register is capable of storing this information because of the small
address space of the LS (256KB), the small range of the parameter (usually 8
bits), and the wide register in the SPE. All these parameters only need to be
packed together once, as they do not change throughout the execution.

There are three possible places to store the tag array. First, a new tag array
structure could be placed on the SPE. This, however, would require a large area
overhead as registers consume a relatively large amount of resources. Second,
the tag array could be placed in the register file. This option would require to
modify the compiler so that it does not allocate a specific number of registers.
This option would also require an indexed register access that would complicate
the pipeline. The third option is to use the LS. This option has the advantage
of allocating the tag array in the largest memory storage in the processor. This
avoids increasing the pressure on the register file and the extra resources of an
register file for the tag array. This option has a higher latency than the previous
ones, however, as a Load has a 6-cycle latency. However, this larger latency is a
good tradeoff as it offers an easier pipeline integration, as presented next.

The resultant hardware behavior is depicted in Fig. 2. W , Z, Y , and X are
the 32-bit indices for each of the dimensions. Tag Array Address is the 16-bit
address of the tag array in the LS divided by 16 to save bits. Each dimension
of the MDSC is associated with a shift, a mask, and a dimensionsize parameter.
Each of these parameters is 8bits wide. shift is the base-2 logarithm of the size
of the corresponding cache block dimension. mask is the base-2 logarithm of the
dimension range (maximum number of bits of the index) minus the corresponding
shift added to the lower indices masks. dimensionsize is the base-2 logarithm size
of the cache block dimension added to the lower cache block dimensions sizes.
The address is actually the index in the memory array that acts as the cache
memory. The n sets parameter carries the number of sets in the MDSC. In
practice, n sets is passed already decremented by one.

Despite the number of operations in the LookUp SC instruction, it remains
relatively simple due to the reduced size of its operands, its simple operations,
and the parallelism of the operations. The LookUp SC instruction hardware
is composed by the set calculation, the tag formation logic, the comparator,
and the address calculation logic. The tag formation and the set calculation



set = ((((W >> shift[w]) ^ (W >> (shift[w] + 1))) +

((Z >> shift[z]) ^ (Z >> (shift[z] + 1))) +

((Y >> shift[y]) ^ (Y >> (shift[y] + 1))) +

((X >> shift[x]) ^ (X >> (shift[x] + 1)))) & (n_sets-1));

tags = Load((Tag_Array_Address + set) << 4);

tag = 1 + ((((W >> shift[w]) << mask[w]) +

((Z >> shift[z]) << mask[z]) +

((Y >> shift[y]) << mask[y]) +

(X >> shift[x])) << 2);

address = (W & ~(0xFFFFFFFF << shift[w])) << dimensionsize[w] +

(Z & ~(0xFFFFFFFF << shift[z])) << dimensionsize[z] +

(Y & ~(0xFFFFFFFF << shift[y])) << dimensionsize[y] +

(X & ~(0xFFFFFFFF << shift[x])) << dimensionsize[x];

quad_result = (0, ((block_size*(set<<2)) << 4) + address, tag, set<<2);

if (tags[0] == tag) return quad_result + (1, 0, 0, 1);

else if (tags[1] == tag) return quad_result + (1, block_size<<4, 0, 1);

else if (tags[2] == tag) return quad_result + (1, 2*block_size<<4, 0, 2);

else if (tags[3] == tag) return quad_result + (1, 3*block_size<<4, 0, 3);

else return quad_result;

Fig. 2. Pseudo-C code of the LookUp SC instruction.

are series of shifts and masks operations to select the significant bits from the
indices. Similarly, the address calculation uses shifts, masks, and adds to find
the position of the data inside the cache block. No multiplication is necessary as
the cache multidimensional blocks dimensions are powers of 2. The quad result
is the quadword to be returned in case of a hit. It consists of four 32-bit integers,
the hit flag, the index of the requested data in the data storage array, the tag,
and the position of the tag in the tag array, respectively. quad result is finally
updated depending of the position of the tags quadword in which tag is found.
The LS is accessed only once to retrieve the tag array (tags) vector pointed by
set.

Most of the hardware components of the accelerator can execute in parallel.
Set calculation, the tag formation, and address calculation can be performed in
parallel. With the result of the set calculation, quad result can also start being
calculated. The set calculation followed by the indices load and the tag formation
followed by the tag comparison need to be performed sequentially.

The SPE pipeline is divided into a front-end and a back-end part. The front
end pipeline is the same for all instructions and it does the instruction fetch-



CACHED_TYPE AMDSC_read( int y, unsigned int x, unsigned int ea){

vec_uint4 index = {x, y ,x ,y};

quadresult = spu_LookUp_SC(index, parameters);

int address = spu_extract(quadresult, 1);

int tag = spu_extract(quadresult, 2);

int set = spu_extract(quadresult, 3);

CACHED_TYPE ret = __cache_mem[address];

if (unlikely (spu_extract(tagpos, 0) != 0))

ret = __cache_mem[__cache_miss(y, x, tag, set, ea)];

return ret;

}

Fig. 3. Resulting C code for the MDSC read function integrated with the
LookUp SC instruction.

ing, instruction decoding and access of the register file. There are five back-end
pipelines for branch, permute, load/store, fixed point, and floating point in-
structions. The load/store back-end pipeline would be modified to perform the
mentioned computations.

The Lookup SC instruction can be easily integrated in the existing MDSC
code with only a few modifications required. The resulting code is depicted in
Fig. 3 where x and y are the indices of structure to be accessed, ea is the address
of the accessed data structure in the external memory, cache mem is the MDSC
data storing array, and parameters are the parameters of the MDSC instance.
The first modification is to merge all the indices in a single register, as performed
by vec uint4 index = x, y, x, y;. Second, the lookup function is replaced by
the spu Lookup SC instrinsic that interfaces the our proposed instruction. The
result of the Lookup SC instruction is then separated into regular integers by
spu extract. The spu extract shifts a specified word position in the quadword
to the first word of the quadword, where it can be processed as a regular integer.
The last step is to replace the calculation of the data address with the result of
the LookUp SC instruction. The miss handling function is not changed.

4 Experimental Methodology

Our evaluation methodology for the proposed accelerator uses two separated
and complementary approaches. The first approach uses a Cell SPE core and
the accelerator is emulated using a load instruction. The second approach uses
the CellSim Simulator [11]. In the simulator the new instruction is added to the
instruction set of the SPE.



To emulate the MDSC accelerator in the Cell we proceed as follows. First,
the kernel is profiled and broken down into the following parts: Processing, con-
sisting of the basic operations of the kernel without the access to the SC; Access,
consisting of accesses to the SC without considering miss handling or data trans-
fer, only SC hits; Miss Handling, consisting of the selection of the cache block to
be replaced, the calculation of the memory address, and the update of the cache
status; and DMA, corresponding to the actual transferring of the data from the
external memory to the local store.

The SPE hardware counter is used to profile the kernels. As there is only one
hardware counter an incremental approach is used to break down the kernel.
First the Processing time is extracted by commenting out the MDSC access. To
isolate the Access time a run of the application is performed with the access to
the SC requesting the same indices, thus with only one miss. This is possible
because the evaluated kernel’s processing times are insensitive to the data being
processed. For isolating Miss Handling the actual data is used to access the
MDSC and the DMA request commands are commented out. The DMA time
is extracted by running the full kernel and subtracting the time taken by the
previous stages.

Second, the Lockup SC instruction is emulated using existing instruction.
Our proposed instruction is comparable with an indexed load instruction and
thus the LQX (the SPE indexed load instruction) is used. The LQX instruction
performs a 32-bit add to calculate the address to be fetched from the LS. In our
proposed instruction, the address calculation depends on the set calculation, as
depicted in Fig. 2. Because the set is 8-bit wide and most of its calculation can
be performed in parallel, we assume that using the same latency as the LQX
instruction is feasible. The LQX instruction is accessed by an SPU intrinsic is
placed in the C code. The Access time of the target application is then profiled
again using the emulated instruction. The accelerated Access time is used in-
stead of the Access time of the original kernel. This new kernel time is used to
estimate the performance gain of the proposed instruction. This is a valid ap-
proach because the Lockup SC instruction only changes the MDSC access time
with all the remaining stages intact.

We also evaluate the proposed hardware extension using the CellSim Simula-
tor. It is not possible to use the IBM SystemSim [12] because there is no access
to the source code to make the necessary modifications. The CellSim Simulator
was used to validate the instruction behavior and to qualitatively analyze the
required hardware complexity. CellSim is not cycle accurate as it does not dis-
tinguish between the odd and even pipelines of the SPE. To handle this problem,
the instruction fetch rate parameter is available. This parameter defines a con-
stant number of instructions that the execution unit fetches per cycle. To tune
this parameter, the results of the kernels profiling are used. In our experiments
the instruction fetch was set according to each kernel. The difference in number
of cycles between the simulators and our measurements is around 7% less for
the MDSC accelerated with LookUp SC. Because of this difference we opted to
report the results acquired following our first approach.



In order to evaluate the LookUp SC instruction, two kernels were selected.
The selection was based on the presence of unpredictable access patterns and
the suitability for the MDSC. Below we briefly describe each kernel.

GLCM The Gray-Level Co-occurrence Matrices (GLCM) is a tabulation of how
often different combinations of pixel brightness values (gray levels) occur in an
image. The second order GLCM considers the relationship between groups of
two (usually neighboring) pixels in the original image. It considers the relation
between two pixels at a time, called the reference and the neighbor pixel. The
GLCM is useful to extract statistical characteristics of the image and is used
in medical imaging and content based image retrieval [13]. In this study, all 9
neighboring pixels are examined.

In this application, the source image can be easily accessed through DMAs.
However, the GLCM matrix is too large to be stored in the LS. Because the
matrix is indirectly indexed, it is not possible to determine in advance which
position of the matrix will be accessed to make efficient use of DMAs. Pho-
tos, however, usually exhibit large amounts of spatial redundancy that can be
exploited here by caches.

H.264 Motion Compensation Motion Compensation (MC) is the process
of copying an area of the reference frame to reconstruct the current frame. For
advanced video codecs such as H.264, both the reference frame and the Motion
Vectors (MV) need to be calculated. In H.264, this process is known as Motion
Vector Prediction (MVP) and is part of the MC. Only after the MVP it is
possible to request the necessary data to reconstruct the frame. Using DMAs to
retrieve the reference area leads to 75% of the execution time of the MC kernel
being spent on waiting for the DMAs to complete [8]. These numbers show the
importance of improving the performance of MC.

The work presented in [10] shows that MC has sufficient locality to be ex-
ploited by a cache. It also shows that SC access time dominates the execution
time of the kernel. The paper then presented software mechanisms to exploit
know access behavior to reduce the number of accesses to the MDSC. E.g. inte-
grating the different color components (Y, Cb, and Cr) into one request.

In this work we focus only on the acceleration given by our proposed instruc-
tion. So, in this MC implementation we use independent caches for each color
component, as with the IBMSC. This was chosen to isolate the benefits of the
proposed hardware.

The HDVideoBench ([14]) is used as input for the benchmarks. Each video
sequence consists of 100 frames in standard (SD), high-definition (HD), and full
high-definition (FHD) resolutions at 25 frames per second. GLCM input is the
first frame of each HDVideoBench sequence that was transformed into an RGB
image. The MC input are the motion vectors and reference indices extracted
from the encoded sequences for each macroblock partition.



5 Experimental Results

In this section experimental results for the LookUp SC instruction accelerating
the MDSC are presented. First, the impact of the LookUp SC instruction on
the access time of the MDSC for 1 to 4 dimensions is analyzed. Then results for
the GLCM and MC kernels are presented and analyzed. Three baseline versions
are presented for each kernel. The results of an implementation without a SC
are given to state the need/impact of a SC for the given kernel. The second
baseline is an implementation using a publicly available SC, the IBMSC for the
Cell [3]. The third baseline uses the MDSC implementation of the kernel without
acceleration. The MDSC implementation is highly optimized, including manual
instruction scheduling, to ensure comparison fairness.

5.1 LookUp SC

To measure the impact of the proposed instruction we first isolated the cache
access functions for IBMSC, MDSC and Accelerated MDSC (AMDSC). It was
performed by several runs of a 200K iterations loop containing 10 accesses to
the cache. The request was such that only the first cache access would result in
a miss. The access function is then modified to a dummy one containing only a
return with a valid data that is dependent on the inputs. The cache access time
is calculated by subtracting the total runtime of the regular functions by the
dummy runtime and then divided by the number of iterations.

In this experiment, the IBMSC has an access time of 57 cycles. The MDSC
access time varies from 44 to 48 cycles for 1 to 4-dimensional MDSC instances.
The AMDSC with LookUp SC has a constant access time of about 17 cycles.
This is a 2.6 speedup compared with the MDSC and a 3.3 when compared with
the IBMSC.

5.2 GLCM Results

In Fig. 4(a) the average execution time for the Full High Definition (FHD)
inputs are depicted. The DMA time to fetch the picture data are not taken into
consideration as they can be overlapped with the computation. The No Cache
baseline is not presented because using DMA requests to access each position of
the matrix would lead to huge number of DMA requests that would slowdown
the performance by 2 orders of magnitude. The Processing time also depicts the
execution time for the GLCM if the matrix would fit in the LS. Each software
cache has a suffix SXY , where S corresponds to the number of sets, X to the
number of rows in the 2-dimensional cache block (which is always 0 for the 1-
dimensional IBMSC), and Y to the number of columns, all in base-2 logarithm.
Furthermore, each SC is 4-way set associative.

For each software cache we determined the optimal configuration but the
cache size is fixed at 64KB. The optimal configuration of the IBMSC has 128
sets and a line size of 128 bytes. Surprisingly, the optimal configuration of the
MDSC uses one-dimensional blocks. Furthermore, it uses 64 sets and a block size



 0

 0.2

 0.4

 0.6

 0.8

 1

IBM
SC_707

M
DSC_608

IM
DSC_608

AM
DSC_608

R
un

tim
e(

s)

Cache

DMA
Miss Handling

Access
Processing

(a) GLCM

 0

 1

 2

 3

 4

 5

 6

 7

No Cache

IBM
SC_509

M
DSC_437

AM
DSC_437

R
un

tim
e(

s)

Cache

DMA
Miss Handling

Access
Processing

(b) MC

Fig. 4. Average runtime for FHD sequences for No Cache, IBMSC, MDSC, and
AMDSC.

of 256 bytes. Compared with the IBMSC, the MDSC has higher DMA transfer
and miss handling times. This is caused by the multidimensional handling of
each MDSC block, even if the block is 1-dimensional, as in this particular case
(a DMA list transfer is slightly slower than a conventional DMA transfer). On the
other hand, the MDSC has a smaller access time that compensates for the other
time components. Also, the MDSC has a higher hit rate. For a more thorough
analysis of the GLCM results with MDSC please refer to [8].

The SC access time dominates the execution time for the IBMSC and MDSC
with 70% and 54%, respectively. The reason is that GLCM has a very small
amount of computation per access. The AMDSC speeds up the access time by a
factor of 3, compared with MDSC. The acceleration in access time translates to
a total speedup of 2.1 and 1.6 for the total kernel, when compared with IBMSC
and with the regular MDSC, respectively.

In this particular kernel, the improvement comes from two factors. First,
there is the reduction in the number of instructions. The LookUp SC instruction
replaces several instructions, what leads to performance gain. A second factor is
that it also reduces the size of the cache access function. With the reduced size,
the access function can be inlined in the GLCM calculation function that further
increases the speedup. With the inlined MDSC (IMDSC) access function, the
speedups of the LookUp SC instruction for the access and the whole kernel are
2.8 and 1.5, respectively.



5.3 MC Results

The IBMSC has a hit rate of 94%, while the MDSC has a hit rate of 98%. This
explains the lower DMA time for the MDSC. On the other hand, the MDSC
complex Miss Handling leads to a higher miss handling time than the IBMSC,
even with fewer misses. The Accelerated MDSC results for MC are depicted in
Fig. 4(b). The configuration notation is the same as in Section 5.2.

The LookUp SC instruction yields a performance improvement of 47% for the
AMDSC access time when compared to the MDSC access time. This relative
improvement is lower than in the previous experiments. The reason for this
is that the MC processing function is an accelerated code that operates on a
temporary array. The cache access copies the reference area to this temporary
array. This is performed inside a nested loop, which introduces a significant
overhead. On the whole MC kernel processing time the AMDSC performance
improvements are 108%, 28%, and 16% when compared with the No Cache,
IBMSC, and MDSC implementations, respectively.

6 Conclusions

In this paper, we presented a new instruction to accelerate software caches.
Software caches are an efficient way to improve performance of applications that
do not have a predictable access behavior to make efficient use of DMAs but do
exhibit locality. On the other hand, software caches incur high overhead.

The LookUp SC instruction performs several critical computations and is
composed by a number of hardware operations. Because several operations can
be performed in parallel, the overall latency of the instruction is estimated to be
the same as the latency of an indexed load instruction.

As a side effect of the reduction of the instructions in the AMDSC access
functions, it can be inlined without a severe impact on the code size. This par-
ticularly improves the performance of applications with a high ratio of number
of memory access to computation.

Our experimental results showed that the LookUp SC instruction signifi-
cantly accelerates the MDSC access function. The overall acceleration depends
on the application that is being accelerated. For MC, the access function accel-
eration is 47%, while for GLCM access function a speedup of 3 is achieved, when
compared to the MDSC access function. For the whole kernels the acceleration
is 1.28× and 2.1×, for MC and GLCM, respectively.

As future work we plan to adapt our instruction to conventional software
caches. As regular software caches use the memory position as index, the address
calculation would not be accelerated by our proposed instruction. Because of this
we expect a lower improvement than the one achieved in this paper.

Another future work is the evaluation of the power consumption of the pro-
posed instruction. A power consumption comparison between a hardware cache
and our AMDSC with scratchpad memory would give interesting quantitative
results and could be used for processor designers as another evaluation point for
future power efficient processors.



References

1. Banakar, R., Steinke, S., sik Lee, B., Balakrishnan, M., Marwedel, P.: Scratchpad
Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems.
In: Tenth Int. Symp. on Hardware/Software Codesign (CODES), Estes Park, ACM
(2002) 73–78

2. Kahle, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D.: Introduction to
the Cell Multiprocessor. IBM Journal of Research and Development 49(4) (2005)
589–604

3. Edler, J., Hill, M.D.: Example Library API Reference https://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/3B6ED257EE6235D900257353006
E0F6A/$file/SDK Example Library API v3.0.pdf.

4. Balart, J., Gonzalez, M., Martorell, X., Ayguade, E., Sura, Z., Chen, T., Zhang,
T., Obrien, K., Obrien, K.: A Novel Asynchronous Software Cache Implementation
for the Cell-BE Processor. In: Languages and Compilers for Parallel Computing:
20th Int. Workshop, Lcpc 2007, Urbana, Il, USA, October 11-13, 2007, Revised
Selected Papers, Springer-Verlag New York Inc (2007) 125–140

5. Lee, J., Seo, S., Kim, C., Kim, J., Chun, P., Sura, Z., Kim, J., Han, S.: COMIC: A
Coherent Shared Memory Interface for Cell BE. In: PACT ’08: Proc. of the 17th
Int. Conf. on Parallel Architectures and Compilation Techniques, New York, NY,
USA, ACM (2008) 303–314

6. Chen, T., Zhang, T., Sura, Z., Tallada, M.G.: Prefetching Irregular References for
Software Cache on Cell. In: CGO ’08: Proc. of the Sixth Annual IEEE/ACM Int.
Symp. on Code Generation and Optimization, New York, NY, USA, ACM (2008)
155–164

7. Gonzàlez, M., Vujic, N., Martorell, X., Ayguadé, E., Eichenberger, A.E., Chen, T.,
Sura, Z., Zhang, T., O’Brien, K., O’Brien, K.: Hybrid Access-Specific Software
Cache Techniques for the Cell BE Architecture. In: PACT ’08: Proc. of the 17th
Int. Conf. on Parallel Architectures and Compilation Techniques, New York, NY,
USA, ACM (2008) 292–302

8. Azevedo, A., Juurlink, B.: A Multidimensional Software Cache for Scratchpad-
Based Systems. Int. Journal of Embedded and Real-Time Communication Systems
1(4) (2010) 1–20

9. Gschwind, M., Hofstee, H., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.:
Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(2) (2006)
10–24

10. Azevedo, A., Juurlink, B.: An Efficient Software Cache for H.264 Motion Compen-
sation. In: Proc. of IEEE Int. Symp. on System-on-Chip. (October 2009) 147–150

11. Cabarcas, F., Rico, A., Rodenas, D., Martorell, X., Ramirez, A., Ayguade, E.:
CellSim: A Cell Processor Simulation Infrastructure. HiPEAC ACACES-2007 279–
282

12. : IBM Full-System Simulator for the Cell Broadband Engine Processor.
http://www.alphaworks.ibm.com/tech/cellsystemsim.

13. Shahbahrami, A., Juurlink, B.: Optimization of Content-Based Image Retrieval
Functions. In: 10th IEEE Int. Symp. on Multimedia. (December 2008) 607–612

14. Alvarez, M., Salami, E., Ramirez, A., Valero, M.: HD-VideoBench:
A Benchmark for Evaluating High Definition Digital Video Applica-
tions. In: Proc. IEEE Int. Symp. on Workload Characterization. (2007)
http://personals.ac.upc.edu/alvarez/hdvideobench/index.html.


