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We consider two disconnected Luttinger liquids which are coupled at t=0 through chiral density-density
interactions. Both for t�0 and t�0 the system is exactly solvable by means of bosonization and this allows
us to evaluate analytically the time dependence of correlation functions. We find that in the long-time limit the
critical exponent governing the one-particle correlation function differs from the exponent dictated by the
equilibrium ground state of the coupled system. We also discuss how this reflects on some physical quantities
which are accessible to real experiments.
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Time-dependent quantum systems have attracted much at-
tention recently. This is because the dynamical response of
nanoscopic devices is now accessible in many experiments
with relevance in practical applications such as quantum
computing and single-electron transport.1 On one side we
discuss the wide investigation of out-of-equilibrium phenom-
ena in transport experiments, where time-dependent transient
currents are measured at picosecond time scales.2 On the
other side, recent experiments in ultracold atoms confined in
optical lattices have shown that it is possible to time tune the
strength of the interactions in both bosonic3 and fermionic4

systems, by using the so-called Feshbach resonance. In these
cases, the intriguing question arises: what is the steady state
to which the initial ground state relaxes to?5,6

In light of this challenging physics, the theoretical inves-
tigation of the time-dependent evolution of many-body inter-
acting system deserves special attention. Recently, an exact
formulation of time-dependent transport in electronic
systems7 was derived in the framework of time-dependent-
density-functional theory.8 Unfortunately, its implementation
to strongly interacting systems is hard. An efficient numeri-
cal tool to address the problem of the electron-electron �e
-e� interactions is the time-dependent density-matrix-
renormalization-group method,9–11 which turns out to have
excellent performance in one-dimensional �1D� systems. For
what concerns electronic systems with time-dependent pa-
rameters but not involving charge transport, in a recent paper
Cazalilla calculated the exact evolution of a noninteracting
1D system following a sudden switch on of Luttinger liquid
e-e interaction.12 Remarkably, it is found that the initial
ground state reaches a stationary state only if the system is
infinite sized and its asymptotic behavior differs from that of
the interacting equilibrium system.6

In this paper, we extend this analysis to two coupled in-
teracting 1D systems. Our system consists of two isolated
Luttinger liquids which are connected at t=0 through inter-
actions between chiral electron densities located at different
liquids.

The Luttinger liquid is the prototype of interacting elec-
trons in 1D and is governed by the so-called Tomonaga-
Luttinger Hamiltonian. In this model, the electrons have a
linear dispersion relation around positive �right� and negative
�left� Fermi points located at ±kF, and the e-e interactions act

only between right/left electron densities. This means that
only the component with momentum transfer p�0 of the
Coulomb repulsion is retained, while the p�2kF component
is assumed to be negligible. The model is exactly solvable by
means of the bosonization technique, which allows us to
write the electron Hamiltonian in terms of boson operators
b’s.

In the following we shall adopt a similar notation as in
Ref. 12.

For t�0, the system consists of two disconnected identi-
cal interacting electron liquids described by the bosonized
Hamiltonian13 H0=H1+H2 with

Hi =
1

2 �
q�0

�„vF + g4
�4��q�…�q�„bi

†�q�bi�q� + bi�q�bi
†�q�…

− g4
�2��q�„bi

†�q�bi
†�− q� + bi�q�bi�− q�…� , �1�

where i=1,2, �bi�q� ,bj
†�q���=�i,j�q,q�, vF is the Fermi veloc-

ity, g4
�4��q� is the interaction parameter between right-right

�positive q� and left-left �negative q� electron densities, while
g4

�2��q� is the interaction parameter between left-right densi-
ties.

The system is diagonalized by the well-known Bogoliu-
bov transformation:

b̃i�q� = cosh ��q�bi�q� + sinh ��q�bi
†�− q� ,

b̃i
†�q� = sinh ��q�bi�− q� + cosh ��q�bi

†�q� , �2�

with

tanh 2��q� = g4
�2��q�/�vF + g4

�4��q�� , �3�

and renormalized velocity

v�q� = �
„vF + g4

�4��q�…2 − „g4
�2��q�…2. �4�

For t�0, the chiral density-density interactions between
the two Luttinger liquids are switched on and the system is
governed by the total Hamiltonian

Htot = H0 + ��t�H12, �5�

where
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H12 = �
q�0

�g2
�4��q�„b1

†�q�b2�q� + b2
†�q�b1�q� + b1�q�b2

†�q�

+ b2�q�b1
†�q� − g2

�2��q�„b1
†�q�b2

†�− q� + b1�q�b2�− q�

+ b2
†�q�b1

†�− q� + b2�q�b1�− q�…� , �6�

where g2
�4��q� (g2

�2��q�) is the interaction parameter between
electron densities of the same �opposite� chirality in different
liquids. Physically, H12 could represent the long-range com-
ponent of the Coulomb repulsion felt by electrons located in
two �quasi� 1D metallic systems close to each other. Here we
are considering a general situation where g2

�4��q��g2
�2��q� but

in real systems like carbon nanotubes, they coincide �see
below�. It is worthwhile to remark that in the present model
the coupling between the two liquids does not involve any
interliquid electron tunneling.

Htot is again diagonalized by introducing symmetrized and
antisymmetrized operators:14

s�q� = �b1�q� + b2�q��/�2,

a�q� = �b1�q� − b2�q��/�2. �7�

In terms of Eqs. �7� Htot decouples in two independent non-
equivalent Luttinger liquids:

Htot = Hs + Ha

=
1

2 �
q�0

�„vF + g4
�4��q� + g2

�4�
…�q�„s†�q�s�q� + s�q�s†�q�…

− „g4
�2��q� + g2

�2��q�…„s†�q�s†�− q� + s�q�s�− q�…�

+
1

2 �
q�0

�„vF + g4
�4��q� − g2

�4�
…�q�„a†�q�a�q� + a�q�a†�q�…

− „g4
�2��q� − g2

�2��q�…„a†�q�a†�− q� + a�q�a�− q�…� . �8�

Finally, the diagonal form of Htot is obtained in terms of

s̃�q� = cosh �s�q�s�q� + sinh �s�q�s†�− q� ,

s̃†�q� = sinh �s�q�s�− q� + cosh �s�q�s†�q� ,

ã�q� = cosh �a�q�a�q� + sinh �a�q�a†�− q� ,

ã†�q� = sinh �a�q�a�− q� + cosh �a�q�a†�q� , �9�

where

tanh 2�s,a�q� = �g4
�2��q� ± g2

�2��q��/�vF + g4
�4��q� ± g2

�4��q�� ,

�10�

and renormalized velocities

vs,a�q� = �
„vF + g4

�4��q� ± g2
�4��q�…2 − „g2

�2��q� ± g4
�2��q�…2.

�11�

Now we are in the position to evaluate the equal-time
one-particle correlation function for t�0, defined as

G�
�i��x,t� = 	eiHtott	i,��x�	i,�

† �0�e−iHtott
H0
, �12�

where i=1,2 labels the two Luttinger liquids decoupled at
t�0, the subscript �=R ,L indicates the right/left character
of the noninteracting fermion fields 	 and 	†, and 	¯
H0

is
the zero-temperature average in the ensemble H0. Without
any loss of generality we shall focus on GR

�1��x , t�.
The bosonization technique allows us to calculate GR with

logarithmic accuracy, which is exact for distances/times
much longer than the typical range of the interactions. The
key point of bosonization is that it is possible to express the
fermion field in terms of boson fields. For instance, the right-
mover fermion field is given by the following expression:

	i,R�x� =

R

�2���1/2ei
i,R�x�, �13�

where � is a short-distance cutoff, proportional to the lattice
spacing, 
R is an anticommuting Klein factor, and


i,R�x� = �
q�0

�2�

qL
�1/2

e−�q/2�bi
†�q�e−iqx + bi�q�eiqx�

+ �0,R + 2�xNR/L , �14�

where NR is the total number of right electrons, ��0,R ,NR�
= i, and L is the length of the system.

Thus the computation of the correlation function reduces
to

GR
�1��x,t� =

1

2��
	ei
1,R�x,t�e−i
1,R�0,t�
H0

=
1

2��
e−1/2
	�
1,R�x, t� − 
1,R�0, t��2
H0

−�
1,R�x,t�,
1,R�0,t���,

�15�

where 
1,R�x , t�=eiHtott
1,R�x�e−iHtott. In order to compute

1,R�x , t�, it is convenient to first evaluate b1�q , t�
=eiHtottb1�q�e−iHtott in terms of the b̃i�q�’s and b̃i

†�q�’s, since
they diagonalize H0 which defines the ensemble we average
on.

After a lengthy algebra involving a direct and an inverse
Bogoliubov transformation in Eq. �9�, and the inverse of Eq.
�2�, one finds

b1�q,t� = A�q,t�b̃1�q� + B��q,t�b̃1
†�− q� + C�q,t�b̃2�q�

+ D��q,t�b̃2
†�− q� , �16�

where

A�q,t� = cosh ��q��− i sin vs�q�t cosh 2�s�q� + cos vs�q�t

+ �a ↔ s�� − sinh ��q��− i sin vs�q�t sinh 2�s�q�

+ �a ↔ s�� ,

B��q,t� = − sinh ��q��− i sin vs�q�t cosh 2�s�q� + cos vs�q�t

+ �a ↔ s�� + cosh ��q��− i sin vs�q�t sinh 2�s�q�

+ �a ↔ s�� ,
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C�q,t� = cosh ��q��− i sin vs�q�t cosh 2�s�q� + cos vs�q�t

− �a ↔ s�� − sinh ��q��− i sin vs�q�t sinh 2�s�q�

− �a ↔ s�� ,

D��q,t� = − sinh ��q��− i sin vs�q�t cosh 2�s�q� + cos vs�q�t

− �a ↔ s�� + cosh ��q��− i sin vs�q�t sinh 2�s�q�

− �a ↔ s�� . �17�

The above relations allow us to evaluate exactly the time
dependence in the correlation function, which reads

GR
�1��x,t� =

1

2��
exp�− �

q�0
�2�

qL
�e−�q � �„�A�q,t��2

+ �C�q,t��2…�− i sin qx + 1 − cos qx� + „�B�q,t��2

+ �D�q,t��2…�i sin qx + 1 − cos qx��� . �18�

The sum over q is performed by using q=2�n /L and we end
up with

GR
�1��x,t� =

c

d�x�1/4�2 cosh 2�+cosh�2�−4�s�+cosh�2�−4�a��

� �d�x − 2vst�d�x + 2vst�
d�2vst�2 �1/8�cosh�2�−4�s�−cosh 2��

� �d�x − 2vat�d�x + 2vat�
d�2vat�2 �1/8�cosh�2�−4�a�−cosh 2��

,

�19�

where d�x�=L sin��x /L�. In order to obtain the above ex-
pression, we have introduced momentum-independent � and
�s,a, such that sinh f�q��e−R0�q�/2 sinh f�0�, with R0 of the
order of the range of the e-e interactions; in this way the
finite overall prefactor c is produced.15

Let us now consider some relevant limits. First, it is
straightforward to check that in the noninteracting case �i.e.
�=�s=�a=0 and va=vs=vF� we recover

GR
�1��x,t� =

c

d�x�
; �20�

on the other hand, for t→0 we find

GR
�1��x,0� =

c�

d�x�cosh 2� , �21�

where c� is again a finite constant. This result corresponds to
the correlation function of an individual Luttinger liquid
governed by H1 or H2, as it should.

More interesting is the case in which g4
�2�=g4

�4�=g2
�4�=0

�i.e. �=0 and −�a=�s� �̄�0 and va=vs� v̄�vF�. In this
case, the system corresponds to two identical replicas of the
model considered by Cazalilla, i.e. an isolated noninteracting
1D system with density-density interactions switched on at
t=0. In this case we obtain

GR
�1��x,t� =

c

d�x�1/4�cosh 4�̄+1�

� �d�x − 2v̄t�d�x + 2v̄t�
d�2v̄t�2 �1/4�cosh 4�̄−1�

, �22�

which recovers the result of Cazalilla �Eq. �9� of Ref. 12�.
The most remarkable result is obtained from the long-time

limit t→� of Eq. �19�. In this case we find

GR
�1��x� �

c

�x�1/4�2 cosh 2�+cosh�2�−4�s�+cosh�2�−4�a�� , �23�

where we have also taken L→�. We point out that if the
infinite length limit is not taken, the correlations obey an
oscillatory behavior even at long time, confirming that in a
finite-sized system a steady state is not reachable. However,
as already discussed in Ref. 12, in mesoscopic systems with
finite L �e.g., L�1 �m for carbon nanotubes� a genuine sta-
tionary state can be reached because of finite temperature
effects. Indeed, if the temperature T is larger than the level
spacing ���vF /L, we have to replace L by vF /T and sin by
sinh in the definition of d�x�. As a consequence, for very
large distances/times, the Green function decays exponen-
tially as GR

1 �e−�x��T, where � is the same exponent displayed
in the power law at T=0.16 Thus it appears that in the expo-
nential regime we can still keep track of the Luttinger liquid
correlations encoded by �. On the other hand, for distances/
times smaller than the thermal length vF� /T �with vF� the
renormalized Fermi velocity16� the power law discussed
above still holds.

In the thermodynamic limit, it is worthwhile to notice that
the result in Eq. �23� does not coincide with the equilibrium
equal-time correlation function of two coupled Luttinger liq-
uids governed by H0+H12. Indeed, in the latter case, the
correlation function reads

GR
�1��x� �

c�

�x�1/2�cosh�2�s�+cosh�2�a�� , �24�

with finite c�. The difference in the critical exponents in the
two cases reveals that in the long-time limit the ground state
of H0 evolved by H0+��t�H12 reaches a stationary state
which is not the ground state of H0+H12. This is due to the
fact that for t�0, the energy is conserved and therefore the
system cannot relax to the ground state. Indeed the critical
exponent in Eq. �23� is larger than the critical exponent in
Eq. �24�, consistent with the fact that in the latter case the
system is able to optimize the repulsive interactions given by
H12.

Now let us discuss the physical consequences of this re-
sult. To this end, we introduce the critical exponent � gov-
erning some relevant observables such as the tunneling den-
sity of states �,17

���� � ��, �25�

which is detectable with scanning tunneling microscopy by
probing the bulk 1D conductor.18,19

In order to compare to real systems, we have to introduce
spin in the previous analysis. This is completely straightfor-
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ward as long as we consider spin-independent e-e interac-
tions. For spinless electrons, the � exponent is obtained by
subtracting 1 from the exponential one-particle correlation
function, while for the corresponding spinful system we just
have to halve such a value.25

It is worthwhile to note that, while in equilibrium sys-
tems, the critical exponent of ���� can be safely extracted
from the equal-time one-particle Green’s function; in out-of-
equilibrium situations such a procedure is far from
obvious.20 Therefore, it would be convenient to relate � to
some other energy-independent observable, such as the mo-
mentum distribution, which also displays a power law:17

n�q� � �q − kF��. �26�

n�q� is accessible, for instance, from angle-resolved photo-
emission spectroscpy, which has been successfully applied to
quasi-1D materials21,22 to measure �.23,24 We also mention
that such a technique is not affected by the uncertainties
regarding the contacts, which are present in transport experi-
ments. At this point, we note again that the above power law
would be cut off by finite temperature effects if �q−kF�
�T /vF.

From Eqs. �23� and �24�, the exponent governing n�q� in
the two different cases discussed above read

�asympt =
1

8
�2 cosh 2� + cosh�2� − 4�s� + cosh�2� − 4�a��

−
1

2
,

�equil =
1

4
�cosh�2�s� + cosh�2�a�� −

1

2
. �27�

The model we have considered could find an experimental
realization in 1D fermionic systems built within optical po-
tential. Unfortunately, in these systems the interaction is
short ranged and this makes the term H12 hard to realize.
Long-range dipole-dipole interactions have been recently ob-
tained in chromium bosonic atoms,26 and Fermi gases with
long-range interactions are likely becoming available.

On the other hand, it is tempting to relate our results to
the physics of carbon nanotubes. Metallic carbon nanotubes
are believed to be rather good �although approximate� real-
izations of Luttinger liquids, since in normal conditions the
main correlation effects come from the long-range part of the
Coulomb repulsion �through the gi

�j� parameters�, while the
back-scattering interactions with large momentum transfer
suffer a 1/R suppression, where R is the radius of the
nanotube.18,19 Indeed, back-scattering interactions are mar-
ginal operators in the renormalization group sense, and in
carbon nanotubes are predicted to break down the Luttinger
liquid state only at very low energy scales.18 This is sup-
ported by direct observation of power-law decay of the linear
conductance as a function of temperature.27–29

It is worthwhile to recall that each individual carbon
nanotube is itself composed by two coupled �identical� Lut-
tinger liquids, since there is a left and a right branch, respec-
tively, around each of the two Fermi points.14,18,30 This im-

plies that the critical exponent governing the decay of the
correlation functions in these systems is actually one half the
exponents defined in Eqs. �27�. Therefore, in the following
we will use �asympt

�nano� =�asympt /2 and �equil
�nano�=�equil /2.

We will compare two possible measurements realized in
two different experimental setups. The first system �setup A�,
which gives access to �asympt

�nano� , is made by two �initially dis-
tant� nanotubes which can be quickly aligned at a controlled
distance. This makes it possible to mimic the switching on of
intertube interactions. In this case, of course, the critical ex-
ponent could only be measured in the final steady state, and
any transient regime is definitively unaccessible. The second
system �setup B�, which gives access to �equil

�nano�, consists in
having the carbon nanotubes synthesized at a given distance,
for instance in a double-wall nanotube. In this case, the sys-
tem has fixed intertube interactions built in from the very
beginning.

Typical metallic nanotubes correspond to armchair �10,
10� geometry �i.e. radius R�7 Å� with length L�1 �m.
The strength of the density-density Coulomb interactions is
then18,30

g4
�2��q � 0� = g4

�4��q � 0� �
4e2

��vF
K0�qcR� ,

g2
�2��q � 0� = g2

�4��q � 0� �
4e2

��vF
K0�qcD� , �28�

where K0 is the modified Bessel function, qc=2� /L is the
infrared momentum cutoff due to the finite size of the nano-
tubes, D�R is the intertube distance, ��2 is the dielectric
constant of typical nanotubes, and vF�8�105 m/s. We re-
call at this point that the amplitude of intratube back-
scattering interactions is approximatively18 0.1e2a /��vFR
�with a=2.46 Å�, which is much smaller than both intra- and
intertube forward scattering interactions for D�R. We also
mention that single-electron tunneling between nanotubes is
usually strongly suppressed since the misalignment of the
respective carbon lattices prevents momentum conservation

FIG. 1. Plot of the critical exponents �asympt
�nano� �dashed curve� and

�equil
�nano� �solid curve� for typical �10, 10� nanotubes as a function of

the logarithm of the distance D between the nanotubes. In log10 D,
D is expressed in Å.
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in the tunneling process. Therfore, the experimental setups
that we propose could be fairly approximated by the model
of two coupled Luttinger liquids.

By inserting gi
�j� obtained in Eqs. �28� into Eqs. �3� and

�10�, we can estimate the critical exponents accessible to
experiments within setups A and B.

The two exponents are plotted in Fig. 1 as a function of
the distance between the nanotubes. For D→�, the intertube
couplings g2

�4� and g2
�2� vanish �see Eq. �28�� and �asympt

�nano� and
�equil

�nano� tend to the common value

�disc
�nano� =

1

4
�cosh 2� − 1� � 0.43, �29�

which governs the correlations of two completely indepen-
dent nanotubes, according to Eq. �21�. This value is in agree-
ment with previous estimates given for single typical
nanotubes.18,19

When the two nanotubes are brought close to each other
in setup A �Fig. 1, dashed line�, the intertube interactions are
switched on and �asympt

�nano� increases. In particular, at D�R we
find

�asympt
�nano� � 0.60. �30�

Regarding setup B �Fig. 1, solid line�, if the two carbon
nanotubes have been synthesized at the same distance D
�R, the predicted exponent is

�equil
�nano� � 0.35, �31�

which is significantly smaller than �asympt
�nano� . We believe that

such a large difference could be detected, even though the
appropriate experimental setup might be difficult to realize.
In particular, in setup A, the two nanotubes should approach
each other at a speed comparable to �or even higher than� the
Fermi velocity ��106 m/s�. We note, by the way, that this
problem does not arise in cold atomic systems, where the
Fermi velocity is orders of magnitude smaller.

In conclusion, we have computed the time-dependent evo-
lution of the single-particle correlation function of two Lut-
tinger liquids coupled by a sudden switch on of the interliq-
uid interaction. This allows us to evaluate the critical
exponent � governing some physical observables accessible
to real experiments, such as the momentum distribution func-
tion. We find that in the long-time limit, the initial ground
state relaxes to a stationary state which is not the equilibrium
ground state of the coupled system. In the latter case, the
critical exponent �equil that results is smaller than the
asymptotic exponent �asympt by about a factor of 2. An ex-
periment capable of detecting such a remarkable finding in
carbon nanotubes is proposed. Finally, we believe that the
present study could be also relevant in experiments involving
ultracold fermionic atoms loaded in optical lattices, where
tunable Luttinger liquids might be realized in the near future.
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