122 research outputs found

    Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group.

    Get PDF
    The frailty syndrome has recently attracted attention of the scientific community and public health organizations as precursor and contributor of age-related conditions (particularly disability) in older persons. in parallel, dementia and cognitive disorders also represent major healthcare and social priorities. although physical frailty and cognitive impairment have shown to be related in epidemiological studies, their pathophysiological mechanisms have been usually studied separately. an international Consensus Group on “Cognitive Frailty” was organized by the international academy on nutrition and aging (i.a.n.a) and the international association of Gerontology and Geriatrics (i.a.G.G) on april 16th, 2013 in toulouse (France). the present report describes the results of the Consensus Group and provides the first definition of a “Cognitive Frailty” condition in older adults. specific aim of this approach was to facilitate the design of future personalized preventive interventions in older persons. Finally, the Group discussed the use of multidomain interventions focused on the physical, nutritional, cognitive and psychological domains for improving the well-being and quality of life in the elderly. the consensus panel proposed the identification of the so-called “cognitive frailty” as an heterogeneous clinical manifestation characterized by the simultaneous presence of both physical frailty and cognitive impairment. in particular, the key factors defining such a condition include: 1) presence of physical frailty and cognitive impairment (Cdr=0.5); and 2) exclusion of concurrent ad dementia or other dementias. under different circumstances, cognitive frailty may represent a precursor of neurodegenerative processes. a potential for reversibility may also characterize this entity. a psychological component of the condition is evident and concurs at increasing the vulnerability of the individual to stressors

    Open Data for Global Science

    Get PDF
    The global science system stands at a critical juncture. On the one hand, it is overwhelmed by a hidden avalanche of ephemeral bits that are central components of modern research and of the emerging ‘cyberinfrastructure’4 for e-Science.5 The rational management and exploitation of this cascade of digital assets offers boundless opportunities for research and applications. On the other hand, the ability to access and use this rising flood of data seems to lag behind, despite the rapidly growing capabilities of information and communication technologies (ICTs) to make much more effective use of those data. As long as the attention for data policies and data management by researchers, their organisations and their funders does not catch up with the rapidly changing research environment, the research policy and funding entities in many cases will perpetuate the systemic inefficiencies, and the resulting loss or underutilisation of valuable data resources derived from public investments. There is thus an urgent need for rationalised national strategies and more coherent international arrangements for sustainable access to public research data, both to data produced directly by government entities and to data generated in academic and not-for-profit institutions with public funding. In this chapter, we examine some of the implications of the ‘data driven’ research and possible ways to overcome existing barriers to accessibility of public research data. Our perspective is framed in the context of the predominantly publicly funded global science system. We begin by reviewing the growing role of digital data in research and outlining the roles of stakeholders in the research community in developing data access regimes. We then discuss the hidden costs of closed data systems, the benefits and limitations of openness as the default principle for data access, and the emerging open access models that are beginning to form digitally networked commons. We conclude by examining the rationale and requirements for developing overarching international principles from the top down, as well as flexible, common-use contractual templates from the bottom up, to establish data access regimes founded on a presumption of openness, with the goal of better capturing the benefits from the existing and future scientific data assets. The ‘Principles and Guidelines for Access to Research Data from Public Funding’ from the Organisation for Economic Cooperation and Development (OECD), reported on in another article by Pilat and Fukasaku,6 are the most important recent example of the high-level (inter)governmental approach. The common-use licenses promoted by the Science Commons are a leading example of flexible arrangements originating within the community. Finally, we should emphasise that we focus almost exclusively on the policy—the institutional, socioeconomic, and legal aspects of data access—rather than on the technical and management practicalities that are also important, but beyond the scope of this article

    Relationship among fibre type, myosin ATPase activity and contractile properties

    Full text link
    At least two types of skeletal muscle myosin have been described which differ in ATPase activity and stability in alkaline or acidic media. Differences in ATPase characteristics distinguish Type I and Type II fibres histochemically. In this study, ATPase activity of myosin from muscles of several species with known histochemical and contractile properties has been determined to test the hypothesis that (1) myosin ATPase activity, (2) histochemical determination of fibre types and (3) maximum shortening velocity, all provide equivalent estimates of contractile properties in muscles of mixed fibre types. Maximum shortening velocity appears to be proportional to ATPase activity as expected from previous reports by Barany. However, both myosin ATPase and the maximum shortening velocity exhibit curvilinear relationships to the fraction of cross-sectional area occupied by Type II fibres. Therefore, we reject the hypothesis and conclude that histochemically determined myofibrillar ATPase does not accurately reflect the intrinsic ATPase activity or shortening velocity in muscles of mixed fibre types. Our data are consistent with the presence of more than two myosin isozymes or with a mixture of isozymes within single muscle fibres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42851/1/10735_2005_Article_BF01005238.pd
    corecore