16 research outputs found

    Multiplexed Quantitative Assessment of the Fate of Taurine and Sulfoquinovose in the Intestinal Microbiome

    Get PDF
    (1) Introduction: Sulfonates, which can be diet- or host-derived, are a class of compounds detected in the gut, are involved in host–microbiome interactions and have several health effects. Our aim was to develop a method to quantify five of the sulfonates in the intestine and apply it in a simplified human microbiome model. These were taurine, its metabolic precursor cysteate and one of its degradation products isethionate, as well as sulfoquinovose and one of its most relevant degradation products 2,3-dihydroxy-1-propanesulfonate. (2) Methods: An extraction and sample preparation method was developed, without the need for derivatization. To detect and quantify the extracted sulfonates, a multiplexed LC-MS/MS-MRM method was established. (3) Results: The accuracy and precision of the method were within GLP-accepted parameters. To apply this method in a pilot study, we spiked either taurine or sulfoquinovose into an in vitro simplified human microbiota model with and without Bilophila wadsworthia, a known sulfonate utilizer. The results revealed that only the culture with B. wadsworthia was able to degrade taurine, with isethionate as an intermediate. After spiking the communities with sulfoquinovose, the results revealed that the simplified human microbiome model was able to degrade sulfoquinovose to 2,3-dihydroxypropane-1-sulfonate, which was probably catalyzed by Escherichia coli. In the community with B. wadsworthia, the 2,3-dihydroxypropane-1-sulfonate produced was further degraded by B. wadsworthia to sulfide. (4) Conclusions: We successfully developed a method for sulfonate quantification and applied it in a first pilot study

    Multiplexed Quantitative Assessment of the Fate of Taurine and Sulfoquinovose in the Intestinal Microbiome

    No full text
    (1) Introduction: Sulfonates, which can be diet- or host-derived, are a class of compounds detected in the gut, are involved in host–microbiome interactions and have several health effects. Our aim was to develop a method to quantify five of the sulfonates in the intestine and apply it in a simplified human microbiome model. These were taurine, its metabolic precursor cysteate and one of its degradation products isethionate, as well as sulfoquinovose and one of its most relevant degradation products 2,3-dihydroxy-1-propanesulfonate. (2) Methods: An extraction and sample preparation method was developed, without the need for derivatization. To detect and quantify the extracted sulfonates, a multiplexed LC-MS/MS-MRM method was established. (3) Results: The accuracy and precision of the method were within GLP-accepted parameters. To apply this method in a pilot study, we spiked either taurine or sulfoquinovose into an in vitro simplified human microbiota model with and without Bilophila wadsworthia, a known sulfonate utilizer. The results revealed that only the culture with B. wadsworthia was able to degrade taurine, with isethionate as an intermediate. After spiking the communities with sulfoquinovose, the results revealed that the simplified human microbiome model was able to degrade sulfoquinovose to 2,3-dihydroxypropane-1-sulfonate, which was probably catalyzed by Escherichia coli. In the community with B. wadsworthia, the 2,3-dihydroxypropane-1-sulfonate produced was further degraded by B. wadsworthia to sulfide. (4) Conclusions: We successfully developed a method for sulfonate quantification and applied it in a first pilot study

    Multiplexed Quantitative Assessment of the Fate of Taurine and Sulfoquinovose in the Intestinal Microbiome

    No full text
    (1) Introduction: Sulfonates, which can be diet- or host-derived, are a class of compounds detected in the gut, are involved in host–microbiome interactions and have several health effects. Our aim was to develop a method to quantify five of the sulfonates in the intestine and apply it in a simplified human microbiome model. These were taurine, its metabolic precursor cysteate and one of its degradation products isethionate, as well as sulfoquinovose and one of its most relevant degradation products 2,3-dihydroxy-1-propanesulfonate. (2) Methods: An extraction and sample preparation method was developed, without the need for derivatization. To detect and quantify the extracted sulfonates, a multiplexed LC-MS/MS-MRM method was established. (3) Results: The accuracy and precision of the method were within GLP-accepted parameters. To apply this method in a pilot study, we spiked either taurine or sulfoquinovose into an in vitro simplified human microbiota model with and without Bilophila wadsworthia, a known sulfonate utilizer. The results revealed that only the culture with B. wadsworthia was able to degrade taurine, with isethionate as an intermediate. After spiking the communities with sulfoquinovose, the results revealed that the simplified human microbiome model was able to degrade sulfoquinovose to 2,3-dihydroxypropane-1-sulfonate, which was probably catalyzed by Escherichia coli. In the community with B. wadsworthia, the 2,3-dihydroxypropane-1-sulfonate produced was further degraded by B. wadsworthia to sulfide. (4) Conclusions: We successfully developed a method for sulfonate quantification and applied it in a first pilot study

    Treatment Extension of Pegylated Interferon Alpha and Ribavirin Does Not Improve SVR in Patients with Genotypes 2/3 without Rapid Virological Response (OPTEX Trial): A Prospective, Randomized, Two-Arm, Multicentre Phase IV Clinical Trial

    No full text
    Although sofosbuvir has been approved for patients with genotypes 2/3 (G2/3), many parts of the world still consider pegylated Interferon alpha (P) and ribavirin (R) as standard of care for G2/3. Patients with rapid virological response (RVR) show response rates >80%. However, SVR (sustained virological response) in non-RVR patients is not satisfactory. Longer treatment duration may be required but evidence from prospective trials are lacking. A total of 1006 chronic HCV genotype 2/3 patients treated with P/R were recruited into a German HepNet multicenter screening registry. Of those, only 226 patients were still HCV RNA positive at week 4 (non-RVR). Non-RVR patients with ongoing response after 24 weeks P-2b/R qualified for OPTEX, a randomized trial investigating treatment extension of additional 24 weeks (total 48 weeks, Group A) or additional 12 weeks (total 36 weeks, group B) of 1.5 ÎĽ\mug/kg P-2b and 800-1400 mg R. Due to the low number of patients without RVR, the number of 150 anticipated study patients was not met and only 99 non-RVR patients (n=50 Group A, n=49 Group B) could be enrolled into the OPTEX trial. Baseline factors did not differ between groups. Sixteen patients had G2 and 83 patients G3. Based on the ITT (intention-to-treat) analysis, 68% [55%; 81%] in Group A and 57% [43%; 71%] in Group B achieved SVR (p=0.31). The primary endpoint of better SVR rates in Group A compared to a historical control group (SVR 70%) was not met. In conclusion, approximately 23% of G2/3 patients did not achieve RVR in a real world setting. However, subsequent recruitment in a treatment-extension study was difficult. Prolonged therapy beyond 24 weeks did not result in higher SVR compared to a historical control group
    corecore