18 research outputs found

    A 3D in vitro model of the human breast duct:A method to unravel myoepithelial-luminal interactions in the progression of breast cancer

    Get PDF
    Abstract Background 3D modelling fulfils a critical role in research, allowing for complex cell behaviour and interactions to be studied in physiomimetic conditions. With tissue banks becoming established for a number of cancers, researchers now have access to primary patient cells, providing the perfect building blocks to recreate and interrogate intricate cellular systems in the laboratory. The ducts of the human breast are composed of an inner layer of luminal cells supported by an outer layer of myoepithelial cells. In early-stage ductal carcinoma in situ, cancerous luminal cells are confined to the ductal space by an intact myoepithelial layer. Understanding the relationship between myoepithelial and luminal cells in the development of cancer is critical for the development of new therapies and prognostic markers. This requires the generation of new models that allows for the manipulation of these two cell types in a physiological setting. Methods Using access to the Breast Cancer Now Tissue Bank, we isolated pure populations of myoepithelial and luminal cells from human reduction mammoplasty specimens and placed them into 2D culture. These cells were infected with lentiviral particles encoding either fluorescent proteins, to facilitate cell tracking, or an inducible human epidermal growth factor receptor 2 (HER2) expression construct. Myoepithelial and luminal cells were then recombined in collagen gels, and the resulting cellular structures were analysed by confocal microscopy. Results Myoepithelial and luminal cells isolated from reduction mammoplasty specimens can be grown separately in 2D culture and retain their differentiated state. When recombined in collagen gels, these cells reform into physiologically reflective bilayer structures. Inducible expression of HER2 in the luminal compartment, once the bilayer has formed, leads to robust luminal filling, recapitulating ductal carcinoma in situ, and can be blocked with anti-HER2 therapies. Conclusions This model allows for the interaction between myoepithelial and luminal cells to be investigated in an in-vitro environment and paves the way to study early events in breast cancer development with the potential to act as a powerful drug discovery platform

    Mechanostimulation of breast myoepithelial cells induces functional changes associated with DCIS progression to invasion

    Get PDF
    Women with ductal carcinoma in situ (DCIS) have an increased risk of progression to invasive breast cancer. Although not all women with DCIS will progress to invasion, all are treated as such, emphasising the need to identify prognostic biomarkers. We have previously shown that altered myoepithelial cells in DCIS predict disease progression and recurrence. By analysing DCIS duct size in sections of human breast tumour samples, we identified an associated upregulation of integrin β6 and an increase in periductal fibronectin deposition with increased DCIS duct size that associated with the progression of DCIS to invasion. Our modelling of the mechanical stretching myoepithelial cells undergo during DCIS progression confirmed the upregulation of integrin β6 and fibronectin expression in isolated primary and cell line models of normal myoepithelial cells. Our studies reveal that this mechanostimulated DCIS myoepithelial cell phenotype enhances invasion in a TGFβ-mediated upregulation of MMP13. Immunohistochemical analysis identified that MMP13 was specifically upregulated in DCIS, and it was associated with progression to invasion. These findings implicate tissue mechanics in altering the myoepithelial cell phenotype in DCIS, and that these alterations may be used to stratify DCIS patients into low and high risk for invasive progression

    A single-cell atlas enables mapping of homeostatic cellular shifts in the adult human breast

    Get PDF
    A.D.R. performed the majority of the bioinformatic analysis and interpretation of the data. S.P. contributed to the study design, sample processing, analysis and interpretation of the data. J.S. contributed to the sample processing. D.J.K. and P.H. contributed to the data processing, batch correction and cell cluster identification. A.S. contributed to the design of the sample batches and contributed to the analysis of the raw data. A.J.T. contributed to the analysis of the data and Figure design. L.J.P. performed the immune histochemistry validations. K.H. assisted A.D.R. with the inferCNV analysis and interpretation. P.H. assisted with the subclustering of immune cells and scVI integration analysis. A.Q.S. performed the immunofluorescence quantification. K.K. performed all the scRNA-seq library preparation and sequencing. R.B.M., I.G., J.J.G., V.S. and J.L.J. provided the human tissues and the metadata from the 55 donors. A.D.R., S.P., J.C.M. and W.T.K. wrote the paper. J.C.M. and W.T.K. conceptualized and supervised the study.Peer reviewe

    Expression of CDK7, cyclin H and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor- positive breast cancer

    Get PDF
    Purpose: CDK-activation kinase (CAK) is required for the regulation of the cell-cycle and is a trimeric complex consisting of Cyclin Dependent Kinase 7 (CDK7), Cyclin H and the accessory protein, MAT1. CDK7 also plays a critical role in regulating transcription, primarily by phosphorylating RNA polymerase II, as well as transcription factors such as estrogen receptor-α (ER). Deregulation of cell cycle and transcriptional control are general features of tumor cells, highlighting the potential for the use of CDK7 inhibitors as novel cancer therapeutics. Experimental Design: mRNA and protein expression of CDK7 and its essential co-factors cyclinH and MAT1, were evaluated in breast cancer samples to determine if their levels are altered in cancer. Immunohistochemical staining of >900 breast cancers was used to determine the association with clinicopathological features and patient outcome. Results: We show that expression of CDK7, cyclinH and MAT1 are all closely linked at the mRNA and protein level and their expression is elevated in breast cancer compared with the normal breast tissue. Intriguingly, CDK7 expression was inversely proportional to tumour grade and size and outcome analysis showed an association between CAK levels and better outcome. Moreover, CDK7 expression was positively associated with ER expression and in particular with phosphorylation of ER at serine 118, a site important for ER transcriptional activity. Conclusions: Expression of components of the CAK complex, CDK7, MAT1 and Cyclin H are elevated in breast cancer and correlates with ER. Like ERα , CDK7 expression is inversely proportional to poor prognostic factors and survival

    The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53

    Get PDF
    p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential

    Additional file 1: Supplementary material. of A 3D in vitro model of the human breast duct: a method to unravel myoepithelial-luminal interactions in the progression of breast cancer

    No full text
    Figure S1. Promoter efficacy in primary cultures of myoepithelial and luminal cells. a Representative images of GFP expression in myoepithelial and luminal cells 48 h following infection with neuraminidase-treated lentiviral particles driving GFP expression under either human/mouse CMV, human/mouse EF1α, CAG, PGK and UBC promoters. Scale bar = 20 μm. b Mean fluorescence intensity (MFI) values of myoepithelial and luminal cells 48 h post-infection with lentiviral particles as in (a). Images and values are representative of cells derived from two donors. Figure S2. Spheroids formed in Matrigel cultures express markers of both luminal and myoepithelial cells. Expression of cytokeratin (CK) 8 and P-cadherin in spheroids formed in Matrigel from co-culture of isolated myoepithelial and luminal cells over 21 days. Images are representative of cells derived from at least three donors. Scale bar = 20 μm. Figure S3. Objective and systematic calculation of cell and spheroid volumes. Representative workflow of spheroid analysis. Raw DAPI z-sections (a) are converted into greyscale images and a greyscale distribution profile (b). Greyscale images are then converted to binary images using a calculated threshold to indicate cell presence (c). The pixels that indicate cells are then translated into a geometrically accurate point cloud using the known image resolutions (d). Further post-processing using density-based spatial clustering of applications with noise (DBSCAN) is performed to identify the main body of cells (e). The point cloud representing the main spheroid is then extracted (f). The alpha-shape algorithm is applied using thresholds set as a function of the image resolutions to form triangulated bodies that represent the cells and body (g). The volumes of these bodies are then calculated alongside the resultant cell/body ratio. (PDF 1342 kb

    Altered Microenvironment Promotes Progression of Preinvasive Breast Cancer: Myoepithelial Expression of  v 6 Integrin in DCIS Identifies High-risk Patients and Predicts Recurrence

    No full text
    PURPOSE: This study investigated the functional and clinical significance of integrin ?v?6 up-regulation in myoepithelial cells of ductal carcinoma in-situ (DCIS).EXPERIMENTAL DESIGN: Archival samples of DCIS and DCIS with associated invasion (n=532) were analysed for expression of ?v?6 by immunohistochemistry, and ability to predict recurrence and progression assessed in an independent, unique cohort of DCIS cases with long term follow up. Primary myoepithelial cells and myoepithelial cell lines, with and without ?v?6 expression, were used to measure the effect of ?v?6 on growth and invasion of tumor cell lines in vitro, and in a xenograft mouse model. Involvement of TGF? signaling was established using MLEC assay and antibody inhibition, and expression and activation of matrix-metalloproteinase (MMP)-9 established by RT-PCR and zymography.RESULTS: Expression of ?v?6 is significantly associated with progression to invasive cancer (p<0.006) and with recurrence over a median follow-up of 114 months in a series of matched DCIS cases treated with local excision. We show that expression of ?v?6 drives myoepithelial cells to promote tumor cell invasion in vitro and enhances mammary tumor growth in vivo. The tumor promoting effect of ?v?6-positive myoepithelial cells is dependent on TGF?-driven up-regulation of MMP9, and can be abrogated by inhibiting this pathway.CONCLUSION: These findings indicate that altered myoepithelial cells in DCIS predict disease progression and recurrence, and demonstrate that up-regulation of ?v?6 on myoepithelial cells generates a tumor-promoter function through TGF? up-regulation of MMP-9. These data suggest expression of ?v?6 may be used to stratify patients with DCIS
    corecore