109 research outputs found

    Annealed and Mean-Field formulations of Disease Dynamics on Static and Adaptive Networks

    Full text link
    We use the annealed formulation of complex networks to study the dynamical behavior of disease spreading on both static and adaptive networked systems. This unifying approach relies on the annealed adjacency matrix, representing one network ensemble, and allows to solve the dynamical evolution of the whole network ensemble all at once. Our results accurately reproduce those obtained by extensive numerical simulations showing a large improvement with respect to the usual heterogeneous mean-field formulation. Moreover, by means of the annealed formulation we derive a new heterogeneous mean-field formulation that correctly reproduces the epidemic dynamics.Comment: 5 pages, 3 Figures. Final version published in Physical Review E (Rapid Comm.

    Immunization of Real Complex Communication Networks

    Get PDF
    Most communication networks are complex. In this paper, we address one of the fundamental problems we are facing nowadays, namely, how we can efficiently protect these networks. To this end, we study an immunization strategy and found that it works as good as targeted immunization, but using only local information about the network topology. Our findings are supported with numerical simulations of the Susceptible-Infected-Removed (SIR) model on top of real communication networks, where immune nodes are previously identified by a covering algorithm. The results provide useful hints in the way to design and deploying a digital immune system.Comment: 6 pages. To appear in the European Physical Journal B (2006

    An integrative approach for modeling and simulation of Heterocyst pattern formation in Cyanobacteria strands

    Get PDF
    A comprehensive approach to cellular differentiation in cyanobacteria is developed. To this aim, the process of heterocyst cell formation is studied under a systems biology point of view. By relying on statistical physics techniques, we translate the essential ingredients and mechanisms of the genetic circuit into a set of differential equations that describes the continuous time evolution of combined nitrogen, PatS, HetR and NtcA concentrations. The detailed analysis of these equations gives insight into the single cell dynamics. On the other hand, the inclusion of diffusion and noisy conditions allows simulating the formation of heterocysts patterns in cyanobacteria strains. The time evolution of relevant component concentrations are calculated allowing for a comparison with experiments. Finally, we discuss the validity and the possible improvements of the model.Comment: 20 pages (including the supporting information), 8 figure

    Communicability reveals a transition to coordinated behavior in multiplex networks

    Get PDF
    We analyse the flow of information in multiplex networks by means of the communicability function. First, we generalize this measure from its definition from simple graphs to multiplex networks. Then, we study its relevance for the analysis of real-world systems by studying a social multiplex where information flows using formal/informal channels and an air transportation system where the layers represent different air companies. Accordingly, the communicability, which is essential for the good performance of these complex systems, emerges at a systemic operation point in the multiplex where the performance of the layers operates in a coordinated way very differently from the state represented by a collection of unconnected networks

    Maximal-entropy random walks in complex networks with limited information

    Get PDF
    J.G.-G. was supported by MICINN through the Ramon y Cajal program and by grants FIS2008-01240 and MTM2009-13848

    Nonintegrable Schrodinger Discrete Breathers

    Full text link
    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrodinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.Comment: 42 pages, 28 figures. to be published in CHAOS (December 2004

    Fear induced explosive transitions in the dynamics of corruption

    Get PDF
    In this article, we analyze a compartmental model aimed at mimicking the role of imitation and delation of corruption in social systems. In particular, the model relies on a compartmental dynamics in which individuals can transit between three states: honesty, corruption, and ostracism. We model the transitions from honesty to corruption and from corruption to ostracism as pairwise interactions. In particular, honest agents imitate corrupt peers while corrupt individuals pass to ostracism due to the delation of honest acquaintances. Under this framework, we explore the effects of introducing social intimidation in the delation of corrupt people. To this aim, we model the probability that an honest delates a corrupt agent as a decreasing function of the number of corrupt agents, thus mimicking the fear of honest individuals to reprisals by those corrupt ones. When this mechanism is absent or weak, the phase diagram of the model shows three equilibria [(i) full honesty, (ii) full corruption, and (iii) a mixed state] that are connected via smooth transitions. However, when social intimidation is strong, the transitions connecting these states turn explosive leading to a bistable phase in which a stable full corruption phase coexists with either mixed or full honesty stable equilibria. To shed light on the generality of these transitions, we analyze the model in different network substrates by means of Monte Carlo simulations and deterministic microscopic Markov chain equations. This latter formulation allows us to derive analytically the different bifurcation points that separate the different phases of the system

    Intergroup information exchange drives cooperation in the public goods game

    Get PDF
    In this paperwe explore the onset of cooperative traits in the public goods game. This well-known game involves N-agent interactions and thus reproduces a large number of social scenarios in which cooperation appears to be essential. Many studies have recently addressed how the structure of the interaction patterns influences the emergence of cooperation. Here we study how information about the payoffs collected by each individual in the different groups it participates in influences the decisions made by its group partners. Our results point out that cross-information plays a fundamental and positive role in the evolution of cooperation for different versions of the public goods game and different interaction structures
    • …
    corecore