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ABSTRACT

In this article, we analyze a compartmental model aimed at mimicking the role of imitation and delation of corruption in social systems. In
particular, the model relies on a compartmental dynamics in which individuals can transit between three states: honesty, corruption, and
ostracism. We model the transitions from honesty to corruption and from corruption to ostracism as pairwise interactions. In particular,
honest agents imitate corrupt peers while corrupt individuals pass to ostracism due to the delation of honest acquaintances. Under this
framework, we explore the effects of introducing social intimidation in the delation of corrupt people. To this aim, we model the probability
that an honest delates a corrupt agent as a decreasing function of the number of corrupt agents, thus mimicking the fear of honest individuals
to reprisals by those corrupt ones. When this mechanism is absent or weak, the phase diagram of the model shows three equilibria [(i) full
honesty, (ii) full corruption, and (iii) a mixed state] that are connected via smooth transitions. However, when social intimidation is strong, the
transitions connecting these states turn explosive leading to a bistable phase in which a stable full corruption phase coexists with either mixed
or full honesty stable equilibria. To shed light on the generality of these transitions, we analyze the model in different network substrates
by means of Monte Carlo simulations and deterministic microscopic Markov chain equations. This latter formulation allows us to derive
analytically the different bifurcation points that separate the different phases of the system.
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The diffusion of behaviors, ideas, and social norms can be mod-
eled as contagion processes. However, unlike usual epidemic
models, the diffusion of behaviors generally implies more com-
plex routes of infection than those observed for pathogens such
as viruses or bacteria. Therefore, depending on the particular
aspects of the human behavior whose dissemination is intended
to be modeled, one must incorporate different transmission
mechanisms from the usual ones in epidemic models. Here,
we consider a compartmental model with three states: honesty,
corruption, and ostracism, to address the imitation and dela-
tion of corrupt behaviors. Both processes involve interactions
with peers, so honest agents can get corrupted after interact-
ing with corrupt agents, while corrupt agents can be betrayed
by interacting with honest individuals. However, to model these

pairwise interactions, we incorporate an essential ingredient to
this particular social dynamics: fear. On one hand, the fear of
corrupt individuals to be betrayed is a mechanism that favors
their reinsertion into the honest compartment. This fear is a
growing function of the fraction of agents already betrayed and,
therefore, in the state of ostracism. On the other hand, fear
also plays a central role in the probability that a honest agent
betrays a corrupt peer, by weakening this probability when the
number of corrupt agents increases, due to the fear of possi-
ble reprisals. Both mechanisms are essential for explaining the
different transitions and phases of the system. In particular, we
show how the inclusion of the fear to delation by the honest leads
to abrupt (explosive) transitions between honest and corrupt
societies.
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I. INTRODUCTION

From the seminal work of Schelling1 in 1978, it is widely
accepted that local interactions between individuals are the basic
components for the development of macroscopic social behaviors.
On the other hand, the connection between microscopic interac-
tions and collective phenomena is the starting point for all appli-
cations of statistical physics. Therefore, as Anderson suggested in
a work2 a few years before that of Schelling, although the underly-
ing mechanisms that drive the interactions between agents in society
seem to be very different from fundamental physical laws, the appli-
cation of the vision, techniques, and tools of statistical mechanics
seems the best avenue to address many social problems in which
the emergence of collective behavior is at work.3 Examples of these
problems include social segregation,4 the spread of rumors,5 cul-
tural dissemination,6 the adoption of technology and ideas,7 or the
emergence of cooperative traits,8 among others.

The original social models were often criticized for their sim-
plicity and the impossibility of their validation. Although the first
criticism can also be made to any model of statistical physics that
aims at capturing the essential ingredients that give rise to the
observed behavior (that is, neglecting particular details that are irrel-
evant at the macroscopic level), the second criticism shows them
as simple toy models with which to capture the qualitative behavior
observed in real scenarios. This second criticism, however, is being
overcome today thanks to advances in data gathering and the possi-
bility of capturing social interactions through online networks and
mobile devices.

The incorporation of interaction patterns between individu-
als through complex networks was the first step toward the use
of these models in real contexts.9–11 In this direction, and always
aligned with the capture of data in social systems, the realism of
these models has been increasing with the addition of ingredients
such as the volatility of contacts,12,13 the multilayer character of many
social systems,14–16 or the consideration of higher order interactions
in different dynamics.17

One of the paradigmatic examples of the former view and
evolution of social models is that of social contagion. Examples
of these are the rumor spreading models (such as those of Daley
and Kendall5 and Maki and Thompson18) or those capturing com-
plex contagions for the adoption of norms/innovations/ideas.7,19–22

Social contagion models usually take the compartmental models of
theoretical epidemiology23,24,41 as the benchmark for capturing the
interactions between individuals, the state of each agent being given
by a discrete variable while the transitions among states are given
by certain probabilities depending of the state of the rest of the
population.

In this work, we make use of social contagion dynamics to
tackle the modeling of corruption, a kind of social norm violation
that is ubiquitous across the history of human cultures and soci-
eties. The social dynamics of corrupt behaviors, explicitly realized
as bribery practices,25–32 has been analyzed in the frame of (either
classical or evolutionary) game theory,33 where behaviors are for-
mally represented by game’s strategies whose spreading over the
population relies on the obtained benefits.

However, when modeling the social dynamics of corruption
in game theoretical terms, the existence of a large parameter space
and/or strategic space often prevents us from performing a detailed

analysis of model computations. In this sense, the need of a clear-
cut analysis on which ingredients are most relevant and which others
are not so much recommends simplifying the modeling assumptions
while trying to keep at least some of those that are essential.

A recent attempt along this line of thought has been made in
Ref. 34, where a simple compartmental model of corruption dynam-
ics is introduced. There, the individuals can transit between three
states, say, honesty, corruption, and ostracism, representing, respec-
tively, the behaviors that conform to the social norm (H), violate it
(C), and have been found corrupt and punished through its expul-
sion from the society (O). The microscopic dynamics of this HCO
model is postulated through four hypothesis on the population flows
among compartments, where general structured (in terms of social
contacts) populations are considered:

• The first assumption is that corruption is a socially infective event:
honest individuals become corrupt only by interaction with their
corrupt acquaintances, at an infection rate fHC

α , that is, a function
of their local configuration.

This assumption for the corruption flow, H → C, conceptualizes
the corrupt behavior as an infective state and not as a game strat-
egy. However, this does not prevent a game theoretic perspective
because the (social) infectious power of a strategy is what allows its
dissemination.

• The flow C → O is exclusively the outcome of the delation of cor-
rupt individuals by their honest neighbors, at a delation rate f CO

β ,
also a function of their local configuration. This way, we con-
sider that only pairwise C–H interactions are the origin of this
flow, thus excluding other possible sources such as administrative
inspection, or police investigation.

• The third assumption is that, at a given constant rate r, the O indi-
viduals are reintroduced into the society as H individuals. This
flow is called reinsertion flow.

• Finally, a fourth flow, the conversion transition C → H, incorpo-
rates the warning-to-wrongdoers effect of social punishment. The
rate governing this flow is strongly linked to the social percep-
tion of risk to be delated, here quantified as the fraction, ⟨O⟩, of
population in the O compartment.

In Fig. 1, we represent a chart flow of the HCO model,
where the assumptions made for the flow between any two
compartments are visualized. From a non-equilibrium statisti-
cal mechanics perspective,35 the model is a (non-Hamiltonian)
version of the kinetic spin-1 Ising model, also referred to as
the Blume–Emery–Griffiths model36 in condensed matter physics,
introduced by these authors as a model for the superfluid tran-
sition in He3–He4 liquid mixtures. The spin-1 Ising model has
already a tradition in social dynamics, as emphasized in Ref. 37
regarding the Schelling model of urban segregation. While in the
Blume–Emery–Griffiths model, the spin state of null z-component
represents the helium 3 isotope and in the Schelling model, it repre-
sents an empty flat in the urban neighborhood, in the HCO model,
it denotes the state of strict social isolation (ostracism).

In Ref. 34, the authors analyzed in full detail the mean
field approximation to the dynamics of the HCO model, and its
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FIG. 1. Chart flow representation of the model. Four different flows among pop-
ulation compartments are considered. First, the flow O → H (reinsertion) occurs
at a constant rate r . The flow C → H (conversion) is driven by the fear of being
delated that we simply quantify by ⟨O⟩. The other two flows, namely, corruption
and delation flows, are determined by pairwise (C–H) interactions and occur with
rate fα and fβ , respectively.

comparison with the numerical results of Monte Carlo (MC) simu-
lations on random and non-random regular networks, for a type of
simple one-variable contact interaction functions fHC

α and f CO
β . The

three-dimensional phase diagram of the model shows the existence
of three generic absorbing states, namely, (i) full honesty, (ii) full
corruption, and (iii) a mixed state with non-zero flow through all the
flow channels. The model shows no multistability and two contin-
uous transitions “full honesty–mixed state” (corruption transition)
and “full corruption–mixed state” (honesty transition), as the model
parameters are tuned. The warning-to-wrongdoers has no influence
on the corruption transition, but it plays an important role in the
honesty transition, favoring the spreading of honest instabilities in
the fully corrupt state.

In this contribution, we explore the effects of introducing social
intimidation in the delation of corrupt people. Furthermore, we aim
at unveiling the effects of introducing non-regular topologies gov-
erning the evolution of corruption. To this aim, we leverage the
original equations introduced in Ref. 34 based on the Microscopic
Markov Chain Approach (MMCA)38–40 and modify the transition
rate f CO

β to account for the new ingredient here introduced. The
resulting equations of the model dynamics for the MC simulations
and both deterministic MMCA and mean field theories are formu-
lated in Sec. II. In Sec. III, we derive closed expressions for the
boundaries of the aforementioned equilibrium phases. In Sec. IV,
the formalism is validated and the phase diagrams of the model for
different contact networks are characterized. Finally, we discuss the
relevance of our findings and their implications for future research
in Sec. V.41

II. THE MODEL EQUATIONS

The system is composed of N agents formally represented by
an unweighted undirected network given by its adjacency matrix
A. From the assumptions that define the HCO model in Sec. I, the
stochastic (MC) simulations of the dynamics are implemented in the
following way:

Assuming that the state of each agent i at time step t is denoted
as σi(t):

(i) If σi(t) = H, then σi(t + 1) = C with transition probability fHC
α ,

a (yet unspecified) function of the local network configuration
around i. The agent remains honest with probability 1 − fHC

α .
(ii) If σi(t) = C, then σi(t + 1) = H (warning-to-wrongdoers effect)

with probability ⟨O⟩, the fraction of population in O state. Then,
if not converted (probability 1 − ⟨O⟩), the corrupt agents will be
delated to O state with transition probability f CO

β , a (yet unspec-
ified also) function of the local configuration around i. Thus,
agent i keeps corrupt at t + 1 with probability (1 − ⟨O⟩)(1 −
f CO
β ).

(iii) If σi(t) = O, then σi(t + 1) = H with probability r while
remaining O (σi(t + 1) = O) with probability 1 − r.

The choice for the specific functions fHC
α (i, {σj}) and f CO

β (i, {σj})
should reflect the assumptions about the pairwise nature of corrup-
tion/delation processes. In particular, as these probabilities originate
exclusively from interaction among individuals in different (C, H)
states, they must satisfy

fHC
α (i, {σj}) = 0 if σj ̸= C for all j such that Aij = 1, (1)

f CO
β (i, {σj}) = 0 if σj ̸= H for all j such that Aij = 1. (2)

In Ref. 34, the choice made for these functions mimics the
familiar implementation of infective interactions in MC simula-
tions on compartmental epidemic models as susceptible-infected-
susceptible (SIS), susceptible-infected-recovered (SIR), etc.

fHC
α (i, {σj}) = 1 −

N
∏

j=1

(1 − αAijδσj ,C), (3)

f CO
β (i, {σj}) = 1 −

N
∏

j=1

(1 − βAijδσj ,H), (4)

where δx,y is Kronecker’s delta. The rationale for (3) is that a honest
focal agent interact with all its corrupt neighbors, and in each one
of these contacts, the probability of becoming corrupt is α. Analo-
gously, for (4), a corrupt focal agent contacts all its honest neighbors
and in each contact is delated with probability β .

At variance with Ref. 34, here we additionally want to incor-
porate the effect of the social intimidation (coercion) that honest
agents might experience when delating corrupt neighbors. To do it
in a simple way, we modify the functional form (4) for the delation
rate and use instead the following:

fβ(i, {σj}) = 1 −
N
∏

j=1

[

1 − β(1 − γ ⟨C⟩)Aijδσj ,H

]

, (5)
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where ⟨C⟩ is the fraction of agents in the C compartment, and γ is a
parameter (0 ≤ γ ≤ 1) measuring the strength of the social intimi-
dation felt by honest people. With this choice, if γ = 0, we recover
the HCO model without intimidation analyzed in Ref. 34. On the
other hand, the effect of intimidation is determined by the level ⟨C⟩
of existing corruption in the system. We keep the function (3) for
the corruption rate,

fα(i, {σj}) = 1 −
N
∏

j=1

(1 − αAijδσj ,C). (6)

Following Refs. 38–40, we introduce a non-linear Markov pro-
cess governing the dynamics of the agents’ state configurations. This
so-called Microscopic Markov Chain Approach (MMCA), widely
used in spreading dynamics, assigns to each agent i, at time t, a real
vector ρ⃗(i; t) whose components are the probabilities that the agent
is in each of the possible states, namely,

ρ⃗(i; t) ≡ (ρh(i; t), ρc(i; t), ρo(i; t)) .

The transition probabilities (i)–(iii) introduced above define a non-
linear Markov process for the time evolution of these probabilities
ρ⃗(i; t + 1) = Q ρ⃗(i; t), where

⎛

⎝

1 − fα ⟨ρo⟩ r
fα (1 − fβ)(1 − ⟨ρo⟩) 0

0 fβ(1 − ⟨ρo⟩) 1 − r

⎞

⎠

is the matrix representation of Q, and ⟨ρo⟩ is the fraction of popula-
tion in O state at time t, i.e.,

⟨ρo⟩ = N−1
∑

i

ρo(i; t). (7)

The rates (6) and (5) translate into

fα(i, {ρ⃗(j; t)}) = 1 −
N
∏

j=1

[

1 − αAijρc(j; t)
]

, (8)

fβ(i, {ρ⃗(j; t)}) = 1 −
N
∏

j=1

[

1 − β(1 − γ ⟨ρc⟩)Aijρh(j; t)
]

, (9)

where ⟨ρc⟩ = N−1
∑

i ρc(i; t) is the population average of ρc at
time t.

The probabilities ρm(i; t) (m = h, c, o) should meet the normal-
ization condition

∑

m

ρm(i; t) = 1 ∀ (i, t). (10)

Then, their temporal evolution is given by 2N coupled difference
equations, and one has the freedom to choose any two components
(e.g., ρh and ρc, or ρc and ρo) as independent variables. For example,

choosing ρc and ρo, the evolution equations read

ρc(i; t + 1) = ρc(i; t)
[(

1 − fβ(i)
)

(1 − ⟨ρo(t)⟩)
]

+ [1 − ρc(i; t) − ρo(i; t)]fα(i), (11)

ρo(i; t + 1) = ρo(i; t)(1 − r) + ρc(i; t)fβ(i) [1 − ⟨ρo(t)⟩] . (12)

The mean field approximation relies on the assumption of homo-
geneity of both field (agent state; H, C, or O) and structure of
contacts (adjacency matrix A). Under these circumstances, it seems
plausible considering average behavior as a good (least biased)
estimation of agent’s behavior, i.e., ρ⃗(i) = ⟨ρ⃗⟩ (for all i) for the
associated Markov process, and the neighborhood of size k can be
selected at random among the population at each time step (well-
mixed population assumption). This way, the mean field discrete
time dynamics is a non-linear two-dimensional map of the sim-
plex (triangle) S2 (i.e., 0 ≤ ρh, ρc ≤ 1, ρh + ρc ≤ 1) onto itself, if one
chooses ρh and ρc as independent variables.

One associates to this map a two-dimensional flow (continuous
time dynamics) defined by the velocity (2D vector) field F⃗(ρ⃗), on the

simplex F⃗(ρ⃗) = ˙⃗ρ ≡ (ρ̇h, ρ̇c) whose components are

Fh(ρ⃗) = −(fα + r + ρc)ρh + (r + ρc)(1 − ρc),

Fc(ρ⃗) = [fα + (1 − fβ)ρc]ρh + [(1 − fβ)ρc − 1]ρc, (13)

where fα and fβ are now the functions

fα(ρc) = 1 − (1 − αρc)
k, (14)

fβ(ρh, ρc) = 1 − [1 − β(1 − γρc)ρh]
k. (15)

One can easily check, from the equations of motion of both
MMCA [Eqs. (11) and (12)] and mean field [Eq. (13)] approaches,
that the states of full honesty (ρh = 1) and full corruption (ρc = 1)
are fixed points for all values of the model parameters.

In what follows, we focus our analysis on the MMCA equations,
for they allow us to capture the effects of heterogeneous contact
networks on the unfolding of corruption. In this sense, the homo-
geneous assumption of the mean-field theory limits its applicability
in this scenario. However, we include a thorough analysis of the
mean field (MF) equations in the Appendix, which is helpful in
understanding the crucial role played by the new social intimidation
mechanism. In particular, we find that, as a result of this mecha-
nism, full honesty and full corruption can coexist as stable solutions
in some regions of the parameters space.

III. LINEAR STABILITY ANALYSIS

The study of the equilibrium points for the original HCO
model revealed the existence of two different transitions: one above
which the fully honest state is no longer a stable configuration and
the other one destabilizing a fully corrupt society. Here, we aim at
deriving an analytical expression for both thresholds to shed light on
the effects of the ingredients here introduced on the onset of corrup-
tion. For this purpose, let us first assume that the system has reached
its steady state implying that ρc(i; t + 1) = ρc(i; t) = ρ∗

c (i) , ρo(i; t +
1) = ρo(i; t) = ρ∗

o (i) ∀i. Under these conditions, Eqs. (11) and (12)
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turn into

fβ(i)ρ∗
c (i) = −⟨ρ∗

o ⟩[1 − fβ(i)]ρ∗
c (i) + [1 − ρ∗

c (i) − ρ∗
o (i)]fα(i),

(16)

rρo(i) = ρ∗
c (i)fβ(i)

[

1 − ⟨ρ∗
o ⟩
]

. (17)

A. Corruption threshold

We now address the threshold triggering the emergence of cor-
rupt agents. Close to the full honesty state, we can assume that
ρ∗

c (i) = εi
c ≪ 1 and ρ∗

o (i) = εi
o ≪ 1 ∀i. The latter allows us to lin-

earize the equations by neglecting those terms O(ε2). This way,
Eqs. (16) and (17) now read

fβ(i)εi
c = (1 − εi

c − εi
o)fα(i), (18)

rεi
o = εi

cfβ(i). (19)

We now must compute the probabilities of being corrupted or
delated, fα(i) and fβ(i), respectively, in this scenario. Both can be
expressed as

fα(i) = 1 −
N
∏

j=1

(1 − αAijε
j
c) ≃ α

N
∑

j=1

Aijε
j
c, (20)

fβ(i) = 1 −
N
∏

j=1

[1 − β(1 − γ ⟨εc⟩)Aijρ
j
h] ≃ 1 − (1 − β)ki , (21)

where ki denotes the degree of node i. Plugging these values into
Eq. (18) and keeping only linear terms yields

εi
c = α

N
∑

j=1

Aij

1 − (1 − β)ki

︸ ︷︷ ︸

Mij

εj
c. (22)

Therefore, obtaining the expression for the corruption threshold
involves solving an eigenvalue problem. As we are interested in the
minimum value of α triggering the emergence of corruption, this
threshold is given by

αc =
1

(max(M)
, (23)

where (max(M) represents the spectral radius of matrix M.

B. Intimidation threshold

Let us now address the destabilization of a full corrupt pop-
ulation. For this purpose, we aim at obtaining the value of the
intimidation γc below which a full corrupt state is no longer a sta-
ble solution of the dynamics. For the sake of simplicity, we explicitly
write the stationary equation for the honest population, which can
be easily obtained by introducing Eqs. (5) and (6) into the normal-
ization condition. This way, the stationary probability that an agent
i belongs to the honest population is given by

fα(i)ρ
∗
h (i) = rρo(i) + ρ∗

c (i)⟨ρo⟩. (24)

We now consider that, close to the intimidation threshold, both
honest people and agents in the ostracism are negligible. In mathe-
matical terms, this is reflected by considering ρ∗

h (i) ≃ εi
h ≪ 1 and

ρ∗
o (i) = εi

o ≪ 1 for all i. In this case, the probabilities fα(i) and fβ(i)
are expressed as

fα(i) = 1 −
N
∏

j=1

[1 − αAijρc(j)] ≃ 1 − (1 − α)ki , (25)

fβ(i) = 1 −
N
∏

j=1

[1 − β(1 − γ ⟨ρc⟩)Aijε
j
h] ≃ β(1 − γ )

N
∑

j=1

Aijε
j
h.

(26)

After using these values in Eqs. (17) and (24) and keeping linear
terms, we obtain

rεi
o = β(1 − γ )

N
∑

j=1

Aijε
j
h, (27)

[

1 − (1 − α)ki
]

εi
h = rεi

o +
1

N

N
∑

j=1

εj
o. (28)

Finally, we introduce Eq. (27) into Eq. (28) which, after a little bit of
algebra, yields

εi
h = β(1 − γ )

N
∑

j=1

kj

Nr
+ Aij

1 − (1 − α)ki

︸ ︷︷ ︸

M̃ij

ε
j
h. (29)

Again, obtaining the intimidation threshold implies solving the
spectra of a given matrix M̃. Unlike the corruption threshold,
the matrix elements do not only contain the pairwise interactions
encoded by Aij but also reflect the influence of the global informa-
tion responsible for the warning-to-wrongdoers effect. Following
the same rationale applied before, we can obtain the intimidation
threshold γc as

γc = 1 −
1

β(max(M̃)
. (30)

IV. RESULTS

Here, we want to characterize the influence of the interplay
between the social intimidation γ and the network structure for the
diffusion of corruption. Let us first check the validity of the formal-
ism introduced in Sec. II by comparing its theoretical predictions
with results yielded by extensive MC simulations. For this purpose,
we study the level of corruption ρ∗

c defined as the fraction of the
population remaining corrupt once the dynamics has reached its sta-
tionary state. In particular, for the equations, we have adiabatically
studied the dependence of ρ∗

c on the corruption rate α by following
both forward and backward continuation schemes. In particular, for
the forward (backward) scheme, the initial configuration for α + δα
(α − δα) is given by the steady state obtained for α with a small per-
turbation introduced to avoid absorbing states. Both schemes start
from a value of the corruption parameter α0 ensuring that a unique
fixed point is always reached regardless of the initial configuration
of agents in (H, C,O) states. Regarding MC simulations, we have
carried out a similar process in which the initial microscopic con-
figuration for α ± δα is constructed according to the macroscopic
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order parameters characterizing the steady state for α. In addition,
all results obtained from MC simulations are averaged over 50 real-
izations to remove the stochastic nature of the processes involved in
them.

We represent in Fig. 2 the evolution of the level of corruption
ρ∗

c as a function of the corruption rate α by considering Scale Free
(SF) and Erdös–Rényi (ER) with N = 1000 nodes and ⟨k⟩ = 4 as the
underlying contact networks dictating the interaction among agents.
There, we check that our formalism reproduces very accurately
the results from MC simulations, as shown by the fair agreement
between both theory and simulations, even close to both thresholds.
In addition, it becomes clear that introducing the social intimida-
tion mechanism encoded by γ changes the nature of the transition
observed toward the fully corrupt society. In particular, we find that,
for γ = 0.4, the system undergoes a second order transition from
all-honest to all-corrupt as in the original HCO model, whereas for
γ = 0.8, the transition turns into a first-order one with an hysteresis
loop in which both fully honest and fully corrupt societies are stable
solutions.

To further explore this phenomenon, we study in Fig. 3 the
phase diagrams ρ∗

c (α, γ ) for SF (left panel) and ER (right panel)
networks. Here we confirm that, as explained above, the intro-
duction of the intimidation parameter γ changes dramatically the
system behavior. In particular, for both topologies, there exists a
critical point (γ ′

c (β , r), α′
c(β , r)) above which the transition taking

place toward the fully corrupt society is no longer smooth but turns
into a first-order discontinuous (explosive) one. Therefore, the exis-
tence of coercion or intimidation clearly promotes the stability of
widespread resilient organizations of corrupt agents.

Let us now address the relevance of the contact network on
the unfolding of corruption. For this purpose, we analyze the values
of both corruption and intimidation thresholds, αc and γc, respec-
tively, for both topologies. Regarding the corruption threshold αc,

we notice that, despite the existence of hubs in the SF network, both
configurations display similar values. This constitutes a counterin-
tuitive result, for in many spreading processes such as epidemics
or the diffusion of ideas, the existence of highly connected nodes
boosts their diffusion across the population. To explain the origin
of this striking phenomenon, we must realize that highly connected
nodes in this model can corrupt a large number of acquaintances but
are also more exposed to being delated by them. Simultaneously, the
exposure of highly connected nodes to delation processes gains even
more relevance close to the intimidation threshold, since a fully cor-
rupt society is much less resilient in SF networks than in ER ones.
Therefore, the observed value of both thresholds αc and γc is the
outcome of the competition between these two opposite effects.

Interestingly, this outcome is governed by the delation rate β
as shown in Fig. 4. Let us first study the impact of the delation rate
β on the corruption threshold αc.42 In particular, for low values of
the delation rate β , the corruption threshold is the same for both
networks. Indeed, by assuming that β ≪ 1, it can be easily shown
that Eq. (23) yields αc ≃ β , which does not depend on the underly-
ing network and reveals the antagonistic nature of both corruption
and delation processes. On the other hand, for high β values, one
recovers the usual picture of spreading dynamics in which SF net-
works are more vulnerable than ER ones, i.e., αSF

c < αER
c . This result

is rooted in the fact that, if β is large enough, corrupt agents are
always delated regardless of the number of honest individuals sur-
rounding them. This way, the more neighbors a corrupt agent has,
the larger is the number of agents that can be corrupted in the single
step she remains corrupt, thus explaining the higher vulnerability of
SF networks in this scenario.

On the other hand, the intimidation threshold is always higher
for the SF network than for the ER one regardless of the β value,
which implies that large corrupt organizations are more stable in
homogeneous topologies than in heterogeneous ones. Remarkably,

FIG. 2. Level of corruption ρ∗
c
as a function of the corruption rate α and the intimidation parameter γ (color code) for scale free (left panel) and Erdös–Rényi (right panel)

networks with N = 1000 nodes and ⟨k⟩ = 4. Lines depict theoretical predictions computed by iterating equations (11) and (12), whereas points show results from MC
simulations averaged over 50 realizations. In particular, solid lines and filled points are obtained following a forward continuation scheme (see text for details), while dashed
lines and empty points correspond to the backward one. In both panels, the rest of parameters have been fixed to (β , r) = (0.05, 0.75).
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FIG. 3. Level of corruption ρ∗
c
(color code) obtained from iterating equations (2)–(4) as a function of the corruption parameter α and the intimidation factor γ . The underlying

structures governing both corruption and delation processes are SF (left panel) and ER (right panel) networks of N = 1000 nodes with ⟨k⟩ = 4. The red dashed line
indicates the value of the corruption threshold αc triggering the onset of corruption. The stripped zone highlights the bistability regions, where the fully corrupted society and
the existence of honest agents are both stable configurations, whereas the blue dot pinpoints the existence of a critical point (α′

c
(β , r), γ ′

c
(β , r)) changing the order of the

transition toward the fully corrupted state. The rest of model parameters have been fixed to (β , r) = (0.05, 0.75).

unlike the corruption threshold αc, the most noticeable differences
between both configurations appear for intermediate β values. To
explain this fact, we must realize that, for low β values, the corrupt
state is very stable for both networks, so no intimidation is needed

for holding it. In contrast, when the delation rate is high enough,
any corrupt agent is rather prone to be delated, so high intimida-
tion values are needed for both configurations to keep a fully corrupt
society.

FIG. 4. Left panel: Corruption threshold αc as a function of the delation rate β . The underlying structures governing both corruption and delation processes are SF (dark
blue line) and ER (light blue line) networks of N = 1000 nodes with ⟨k⟩ = 4. Right panel: Intimidation threshold as a function of the corruption rate α for several values of the
delation rate (color code). Solid lines depict the estimation for the ER network, whereas dashed ones correspond to the SF network. The reinsertion rate is fixed to r = 0.75.
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V. CONCLUSIONS

Game theory has been traditionally the most used benchmark
to study the evolution of corruption. In this sense, game theoretical
frameworks allow for incorporating many of the features associ-
ated with this phenomenon such as the existence of social norm
violations and its consequent punishment. Nonetheless, the large
number of parameters involved in these models hinders getting
any general insights into the relevance of these processes. For this
reason, we proposed an alternative approach in Ref. 34, the HCO
model that consists in a minimal compartmental model which, apart
from incorporating these ingredients, enables us to understand their
impact on the diffusion of corruption.

The original HCO model, though novel with respect to other
frameworks, has some limitations such as considering that the inter-
action among agents is governed by regular topologies or assuming
the behavior of honest agents not to depend on the presence of cor-
rupt counterparts. To increase the degree of realism of the model, in
this manuscript we have extended the HCO model to account for the
heterogeneity observed in most of the real networks. In addition, we
also introduce a new mechanism, the social intimidation, which cap-
tures coercion practices made by corrupt agents aimed at preventing
honest agents from delating them.

Formally, to monitor the evolution of corruption, we have pro-
posed a set of equations based on the MMCA, which have been
validated by comparing their predictions with results obtained from
extensive individual MC simulations. The analysis of the equations
has revealed the existence of two different transitions: one destabiliz-
ing a fully honest population and the other one giving rise to a totally
corrupt society. In this sense, the linearization of the model has
allowed us to accurately determine the thresholds triggering both
transitions.

Remarkably, we have proved that the social intimidation mech-
anism changes the nature of the transition toward the fully corrupt
society. Thus, enforcing this mechanism turns the smooth continu-
ous transition reported in the original HCO model into a first-order
discontinuous one,43 reminding other types of abrupt transitions
that occur on social norms adoption models.7,19–22 In particular, we
have found some regions of the parameters space, where both a fully
honest population and a fully corrupt one can coexist as stable solu-
tions, thus highlighting the resilience of the latter state due to the
new mechanism. Moreover, we have characterized the role that the
contact network plays in the evolution of corruption. In particu-
lar, we have found that the antagonistic nature of corruption and
delation processes may hinder the characteristic spreading enhance-
ment associated with heterogeneous topologies. This is explained by
noticing that the most connected nodes in heterogeneous networks,
responsible for the onset of corruption, are also the most exposed
ones to the delation of their acquaintances. Despite being a counter-
intuitive result, this spreading detriment in heterogeneous networks
has been already reported for other antagonistic coupled dynamics
such as the spread of diseases and vaccination44 or the spread of ideas
and lack of consensus.45

In a nutshell, the main contribution of this work is to pro-
vide a theoretical framework that allows one to incorporate and
understand the relevance of different features inherent to corrup-
tion dynamics that cannot be characterized neither by following

game theoretical approaches nor by considering traditional com-
partmental models widely used for other spreading processes such
as epidemics or ideas diffusion. We believe that this formalism paves
the way to construct more refined models including more realistic
ingredients such as the multiplex nature of human interactions14–16

or the existence of gangs formed by different types of agents.46

ACKNOWLEDGMENTS

We acknowledge financial support from the Spanish Ministe-
rio de Economía y Competitividad through Project No. FIS2017-
87519-P and from the Departamento de Industria e Innovación del
Gobierno de Aragón y Fondo Social Europeo through Project No.
E36_17R (FENOL group).

APPENDIX: LINEAR STABILITY ANALYSIS OF FIXED
POINTS. MEAN FIELD APPROXIMATION

In Sec. II, the mean field dynamics of the model was derived
as the flow in the simplex S2 defined by the velocity field F⃗(ρ⃗) of
components,

Fh(ρ⃗) = −(fα + r + ρc)ρh + (r + ρc)(1 − ρc), (A1)

Fc(ρ⃗) = (fα + (1 − fβ)ρc)ρh + ((1 − fβ)ρc − 1)ρc, (A2)

where the functions fα and fβ are given, respectively, by Eqs. (14)
and (15).

The Jacobian matrix, Jml = ∂Fm
∂ρl

, at the full honesty fixed point

(ρh = 1) is

(

−r −r − f′α(0)
0 f′α(0) − fβ(1, 0)

)

, (A3)

from where the stability condition of the full H state is obtained as
f′α(0) < fβ(1, 0), i.e.,

α < αc(β , γ , r) =
1 − (1 − β)k

k
. (A4)

The corruption threshold αc is independent of the values of both
reinsertion and intimidation parameters, r and γ . Thus, we see
that social intimidation has no effects on the onset of corruptive
fluctuations in the full H macrostate. As analyzed in Ref. 34, the
warning-to-wrongdoers does not influence this transition either so
that only the balance among α and β determines the corruption
transition.

To analyze the stability of the full corruption state (ρc = 1), we
compute the Jacobian matrix at this fixed point as

(

−fα(1) − r − 1 −r − 1

fα(1) + 1 −
∂fβ
∂ρh

(0, 1) 1

)

, (A5)

from which the stability condition of the full C state is given by

(

1 +
1

r

)

∂fβ
∂ρh

(0, 1) < fα(1). (A6)
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FIG. 5. Phase diagram in the (α,β) plane. The intimidation parameter has been fixed to γ = 0 (left panel) and γ = 0.9 (right panel). The reinsertion rate has been fixed in
both panels to r = 0.75. The green line shows the value of αc(β , γ , r) computed according to Eq. (A4), whereas the blue one represents βc(α, γ , r) obtained from Eq. (A7).
The bistable area encodes a region of the parameters space in which both fully honest and fully corrupt configurations are stable states.

For fixed values of α, γ , and r, the stability condition (A6) tells us
that the delation threshold is given by

βc(α, γ , r) =
r

k(1 − γ )(1 + r)

(

1 − (1 − α)k
)

. (A7)

Alternatively, for fixed values of α, β , and r, the full corruption
macrostate is stable provided the intimidation parameter satisfies

γ > γc(α, β , r) = 1 −
r

kβ(1 + r)

(

1 − (1 − α)k
)

. (A8)

Let us fix the values of γ and r, and consider (see Fig. 5) the
unit square 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. The region to the left of the line
αc(β) [Eq. (A4)] connecting the points (0, 0) and (1/k, 1) is the sta-
bility region of the full H macrostate, while the region below the
line βc(α) [Eq. (A7)] corresponds to the stability region of the full
C macrostate. These two regions do not overlap for low enough val-
ues of the intimidation parameter γ (see the left panel of Fig. 5).
However, they do overlap for higher values of γ , as shown in the
right panel of Fig. 5. The value γ ∗ of the intimidation parameter
above which both macrostates, full H and full C, coexist as stable
fixed points is the one for which the slopes at (0, 0) of both lines
coincides, i.e.,

γ ∗ = 1/(1 + r). (A9)

When the full H and full C fixed points are stable, an invari-
ant manifold (containing an unstable fixed point) must exist in
the interior of the simplex, that is, the basin boundary separating
the basins of attraction of these stable fixed points. Therefore, the
incorporation of social intimidation in the HCO model introduces
new scenarios regarding the evolution of asymptotic states when

parameters are tuned: multistability, hysteresis, and discontinuous
(explosive) transitions.

Let us think of a cyclic process at fixed values of β , γ , and r in
which the value of the parameter α first increases from 0 to 1 and
then decreases from 1 to 0. For very low values of γ , the possible
sequences of absorbing states along the cycle are those of the HCO
model without intimidation,34 i.e.,

(a) If β < βc(1), “full H → mixed state → full C” for the forward
semi-cycle, and “full C → mixed state → full H” for the back-
ward semi-cycle. The arrows represent continuous transitions
(at α = αc(β) and at α = ᾱ such that βc(ᾱ) = β , respectively)
so that the cycle shows no hysteresis.

(b) If β > βc(1), “full H → mixed state,” followed by “mixed state
→ full H.”However, for higher values of γ , besides the previous
ones, the following sequences of asymptotic states during the
cycle are also possible:

(c) For the forward semi-cycle, “full H → mixed state ! full C,”
where the curly arrow represents a discontinuous transition,
followed by “full C ! mixed state → full H,” with hysteresis,
so that the discontinuous transition during the backward semi-
cycle occurs at a value of α lower than that of the discontinuous
transition in the forward semi-cycle.

(d) “Full H → mixed state ! full C” for the forward semi-cycle,
followed by “full C! full H.”

(e) “Full H! full C,” followed by “full C! full H.”

Note that in the scenario described by item (c), there is no coexis-
tence of full H and full C states as stable fixed points along the cycle,
while its coexistence is required in the scenarios (d) and (e). On
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FIG. 6. Phase portraits according to Eqs. (A1) and (A2) by setting (k,β , r , γ ) = (4, 0.4, 0.75, 0.9). The Fh nullcline is represented by orange lines, whereas the Fc one is
depicted by black lines. The chosen values for the corruption rate are: (a) α = 0.05, (b) α = 0.20, (c) α = 0.30, and (d) α = 0.60.

the other hand, both scenarios (c) and (d) require the simultaneous
stability of the full C state and an interior fixed point.

Our numerical exploration in the 4D space of parameters
reveals that these new scenarios are indeed observed. In Fig. 6, we
show some examples of phase portraits along a path where scenario
(d) is observed.
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