research

An integrative approach for modeling and simulation of Heterocyst pattern formation in Cyanobacteria strands

Abstract

A comprehensive approach to cellular differentiation in cyanobacteria is developed. To this aim, the process of heterocyst cell formation is studied under a systems biology point of view. By relying on statistical physics techniques, we translate the essential ingredients and mechanisms of the genetic circuit into a set of differential equations that describes the continuous time evolution of combined nitrogen, PatS, HetR and NtcA concentrations. The detailed analysis of these equations gives insight into the single cell dynamics. On the other hand, the inclusion of diffusion and noisy conditions allows simulating the formation of heterocysts patterns in cyanobacteria strains. The time evolution of relevant component concentrations are calculated allowing for a comparison with experiments. Finally, we discuss the validity and the possible improvements of the model.Comment: 20 pages (including the supporting information), 8 figure

    Similar works