3,943 research outputs found

    3D Segmentation Method for Natural Environments based on a Geometric-Featured Voxel Map

    Get PDF
    This work proposes a new segmentation algorithm for three-dimensional dense point clouds and has been specially designed for natural environments where the ground is unstructured and may include big slopes, non-flat areas and isolated areas. This technique is based on a Geometric-Featured Voxel map (GFV) where the scene is discretized in constant size cubes or voxels which are classified in flat surface, linear or tubular structures and scattered or undefined shapes, usually corresponding to vegetation. Since this is not a point-based technique the computational cost is significantly reduced, hence it may be compatible with Real-Time applications. The ground is extracted in order to obtain more accurate results in the posterior segmentation process. The scene is split into objects and a second segmentation in regions inside each object is performed based on the voxel’s geometric class. The work here evaluates the proposed algorithm in various versions and several voxel sizes and compares the results with other methods from the literature. For the segmentation evaluation the algorithms are tested on several differently challenging hand-labeled data sets using two metrics, one of which is novel.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Optimizing Scan Homogeneity for Building Full-3D Lidars based on Rotating a Multi-Beam Velodyne Rangefinder

    Get PDF
    Multi-beam lidar (MBL) scanners are compact, light, and accessible 3D sensors with high data rates, but they offer limited vertical resolution and field of view (FOV). Some recent robotics research has profited from the addition of a degree-of-freedom (DOF) to an MBL to build rotating multi-beam lidars (RMBL) that can achieve high-resolution scans with full spherical FOV. In a previous work, we offered a methodology to analyze the complex 3D scan measurement distributions produced by RMBLs with a rolling DOF and no pitching. In this paper, we investigate the effect of introducing constant pitch angles in the construction of the RMBLs with the purpose of finding a kinematic configuration that optimizes scan homogeneity with a spherical FOV. To this end, we propose a scalar index of 3D sensor homogeneity that is based on the spherical formulation of Ripley's K function. The optimization is performed for the widely used Puck (VLP-16) and HDL-32 sensors by Velodyne.This work was partially funded by the Spanish project {DPI2015-65186-R}. The publication has received support from Universidad de Málaga, Campus de Excelencia Andalucía Tech

    Tracing out the Northern Tidal Stream of the Sagittarius Dwarf Spheoridal Galaxy

    Full text link
    The main aim of this paper is to report two new detections of tidal debris in the northern stream of the Sagittarius dwarf galaxy located at 45 arcdeg and 55 arcdeg from the center of galaxy. Our observational approach is based on deep color-magnitude diagrams, that provides accurate distances, surface brightness and the properties of stellar population of the studied region of this tidal stream. The derived distances for these tidal debris wraps are 45 kpc and 54 kpc respectively.We also confirm these detections with numerical simulations of the Sagittarius dwarf plus the Milky Way. The model reproduces the present position and velocity of the Sagittarius main body and presents a long tidal stream formed by tidal interaction with the Milky Way potential. This model is also in good agreement with the available observations of the Sagittarius tidal stream. We also present a method for estimating the shape of the Milky Way halo potential using numerical simulations. From our simulations we obtain an oblateness of the Milky Way dark halo potential of 0.85, using the current database of distances and radial velocities of the Sagittarius tidal stream. The color-magnitude diagram of the apocenter of Sagittarius shows that this region of the stream shares the complex star formation history observed in the main body of the galaxy. We present the first evidence for a gradient in the stellar population along the stream, possibly correlated with its different pericenter passages. (abridged)Comment: 43 pages (including 15 figures; for high resolution color figures, please contact [email protected]). Submitted to Ap

    Exploring the Vision Processing Unit as Co-Processor for Inference

    Get PDF
    The success of the exascale supercomputer is largely debated to remain dependent on novel breakthroughs in technology that effectively reduce the power consumption and thermal dissipation requirements. In this work, we consider the integration of co-processors in high-performance computing (HPC) to enable low-power, seamless computation offloading of certain operations. In particular, we explore the so-called Vision Processing Unit (VPU), a highly-parallel vector processor with a power envelope of less than 1W. We evaluate this chip during inference using a pre-trained GoogLeNet convolutional network model and a large image dataset from the ImageNet ILSVRC challenge. Preliminary results indicate that a multi-VPU configuration provides similar performance compared to reference CPU and GPU implementations, while reducing the thermal-design power (TDP) up to 8x in comparison.The experimental results were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at PDC Centre for High-Performance Com- puting (PDC-HPC). The work was funded by the European Commission through the SAGE project (Grant agreement no. 671500 / http://www.sagestorage.eu).Postprint (author's final draft

    Regulatory polymorphisms in extracellular matrix protease genes and susceptibility to rheumatoid arthritis: a case-control study

    Get PDF
    Many extracellular matrix (ECM) proteases seem to be important in rheumatoid arthritis (RA) and regulation of their transcription levels is a critical mechanism for controlling their activity. We have investigated, therefore, whether the best-characterized single nucleotide polymorphisms (SNPs) affecting transcription of the ECM proteases that have been related with joint pathology are associated with RA susceptibility. Nine SNPs in eight genes were selected by bibliographic search, including SNPs in the genes encoding matrix metalloproteinase (MMP)1, MMP2, MMP3, MMP7, MMP9, MMP13, plasminogen activator, tissue type (PLAT) and PAI-1. They were studied in a case-control setting that included 550 RA patients and 652 controls of Spanish ancestry from a single center. Genotyping was performed by single-base extension. Only two of the nine SNPs showed significant association with RA susceptibility. RA patients showed increased frequencies of the -7351 T allele of the gene encoding PLAT (36.4% versus 32.1% in controls, p = 0.026) and the -1306 T allele of the gene encoding MMP2 (24.5% versus 20.3% in controls, p = 0.013). These two alleles seemed to cooperate according to an additive model with respect to increased RA susceptibility (p = 0.004), and they were the low-expression alleles of the respective SNPs in a PLAT enhancer and the MMP2 promoter. These findings are in agreement with previous data suggesting that these two ECM proteases have a protective role in RA pathology. Confirmation of these associations will be needed to support these hypotheses. The remaining SNPs did not show association, either individually or collectively. Therefore, although regulatory SNPs in ECM proteases did not show any major effect on RA susceptibility, it was possible to find modest associations that, if replicated, will have interesting implications in the understanding of RA pathology

    Integration of a Canine Agent in a Wireless Sensor Network for Information Gathering in Search and Rescue Missions

    Get PDF
    Search and rescue operations in the context of emergency response to human or natural disasters have the major goal of finding potential victims in the shortest possible time. Multi-agent teams, which can include specialized human respondents, robots and canine units, complement the strengths and weaknesses of each agent, like all-terrain mobility or capability to locate human beings. However, efficient coordination of heterogeneous agents requires specific means to locate the agents, and to provide them with the information they require to complete their mission. The major contribution of this work is an application of Wireless Sensor Networks (WSN) to gather information from a multi-agent team and to make it available to the rest of the agents while keeping coverage. In particular, a canine agent has been equipped with a mobile node installed on a harness, providing information about the dog’s location as well as gas levels. The configuration of the mobile node allows for flexible arrangement of the system, being able to integrate static as well as mobile nodes. The gathered information is available at an external database, so that the rest of the agents and the control center can use it in real time. The proposed scheme has been tested in realistic scenarios during search and rescue exercises

    Automated Extraction Improves Multiplex Molecular Detection of Infection in Septic Patients

    Get PDF
    Sepsis is one of the leading causes of morbidity and mortality in hospitalized patients worldwide. Molecular technologies for rapid detection of microorganisms in patients with sepsis have only recently become available. LightCycler SeptiFast test Mgrade (Roche Diagnostics GmbH) is a multiplex PCR analysis able to detect DNA of the 25 most frequent pathogens in bloodstream infections. The time and labor saved while avoiding excessive laboratory manipulation is the rationale for selecting the automated MagNA Pure compact nucleic acid isolation kit-I (Roche Applied Science, GmbH) as an alternative to conventional SeptiFast extraction. For the purposes of this study, we evaluate extraction in order to demonstrate the feasibility of automation. Finally, a prospective observational study was done using 106 clinical samples obtained from 76 patients in our ICU. Both extraction methods were used in parallel to test the samples. When molecular detection test results using both manual and automated extraction were compared with the data from blood cultures obtained at the same time, the results show that SeptiFast with the alternative MagNA Pure compact extraction not only shortens the complete workflow to 3.57 hrs., but also increases sensitivity of the molecular assay for detecting infection as defined by positive blood culture confirmation
    corecore