
Exploring the Vision Processing Unit as Co-processor for Inference

Sergio Rivas-Gomez1, Antonio J. Peña2, David Moloney3, Erwin Laure1, and Stefano Markidis1

1KTH Royal Institute of Technology
2Barcelona Supercomputing Center (BSC)

3Intel Ireland Ltd.

Abstract—The success of the exascale supercomputer is
largely debated to remain dependent on novel breakthroughs in
technology that effectively reduce the power consumption and
thermal dissipation requirements. In this work, we consider the
integration of co-processors in high-performance computing
(HPC) to enable low-power, seamless computation offloading of
certain operations. In particular, we explore the so-called Vision
Processing Unit (VPU), a highly-parallel vector processor with
a power envelope of less than 1W. We evaluate this chip
during inference using a pre-trained GoogLeNet convolutional
network model and a large image dataset from the ImageNet
ILSVRC challenge. Preliminary results indicate that a multi-
VPU configuration provides similar performance compared to
reference CPU and GPU implementations, while reducing the
thermal-design power (TDP) up to 8× in comparison.

Keywords-Vision Processing Unit; High-Performance Com-
puting; Machine Learning

I. INTRODUCTION

The recent advances in deep learning and convolutional
networks, have dramatically influenced the role of machine
learning on a wide-range of scientific applications [1], [2].
This fact has been motivated by an increase in object
classification and detection accuracy [3], [4], alongside with
better tools for data mining that allow us to understand large
datasets of unstructured information [5], [6]. The inference
error rate of machine learning algorithms has become re-
markably low as well, reaching a state where the capacity of
humans has been already surpassed in certain scenarios [7].

As a consequence, there is an existing trend that pro-
poses the integration of data-centric models on HPC that
combines specialized hardware with the aim of fulfilling
this need [8]. Upcoming major supercomputers are expected
to feature new hardware architectures that provide high-
performance 16-bit / 32-bit mixed arithmetic support for
machine learning [9], both during training and inference.
In addition, innovation at software level is also observed
with the appearance of novel data formats that use tensors
with a shared exponent [10], [11], maximizing the dynamic
range of the traditional 16-bit floating point data format.
These breakthroughs provide multiple advantages in terms
of performance and power consumption. Specifically, some
of the aforementioned architectural changes are expected to
increase the performance 5–10× in comparison with current
large-scale HPC clusters, using just twice the power [12].
Hence, it will be of paramount importance for the success

of the exascale supercomputer that we consider the embrace-
ment of these developments in the near-term future.

In this work, we set the initial steps towards the integra-
tion of low-power co-processors on HPC. In particular, we
analyze the so-called Vision Processing Unit (VPU). This
type of processor emerges as a category of chips that aim to
provide ultra-low power capabilities, without compromising
performance. For this purpose, we explore the possibilities
of the Movidius Myriad 2 VPU [13], [14] during inference in
convolutional networks, over a large image dataset from the
ImageNet ILSVRC 2012 challenge [15]. In our evaluations,
we use a pre-trained network from the Berkeley Vision and
Learning Center (BVLC), which follows the GoogLeNet
work by Szegedy et al. [3]. Preliminary results indicate
that a combination of several of these chips can potentially
provide equivalent performance compared to a reference
CPU and GPU implementation, while reducing the thermal-
design power (TDP) up to 8×. The observed throughput,
measured as number of inferences per Watt, is over 3×
higher in comparison. The estimated top-1 error rate is 32%
on average, with a confidence error difference of 0.5%.

The contributions of this work are the following:

• We provide a comprehensive technical overview of
the Myriad 2 VPU in the context of the Intel Neural
Compute Stick (NCS) platform [16].

• We design and implement a small inference framework
based on Caffe [17] and the Neural Compute API [18]
to support our experiments on the VPU.

• We illustrate that VPUs feature an excellent ratio be-
tween throughput and power consumption compared to
reference CPU and GPU implementations, including in
multi-VPU configurations.

• We compare the top-1 error rate [3] with a reference
CPU implementation to understand the implications of
using FP16 on the VPU.

The paper is organized as follows. We provide a high-
level overview of the VPU in Section II. We describe the
implementation considerations of a small inference frame-
work in Section III. The experimental setup and performance
evaluation is presented in Section IV. We extend the discus-
sion of the results and provide further insights in Section V.
Related work is reported in Section VI. A summary of our
conclusions and future work is outlined in Section VII.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works

II. BACKGROUND

The emergence of machine learning and data-centric
applications on HPC poses several constraints on general-
purpose processors, mainly due to the irregularity of the
memory accesses that they feature [19], [20]. These accesses
have reduced temporal or spatial locality, incurring in long
memory stalls and large bandwidth requirements. As a
side effect, the power consumption and thermal dissipation
requirements considerably increase as well [21]. Thus, dur-
ing the last decade, scientists have experimented with the
integration of novel algorithms that perform dynamic, in-
memory data rearrangements of irregular structures [22],
[23]. The aim is to overcome (or partially hide) some of
the aforementioned limitations.

Nonetheless, the inherent complexity of such techniques,
coupled with the adoption of the “CPU + Accelerator” model
to enhance the performance of scientific applications [24],
makes programming general-purpose processors another
key-factor to consider. In addition, transferring data among
these different hardware layers can also become costly [25].
As a consequence, the industry is shifting towards designing
processors where cost, power, and thermal dissipation are
key concerns [14]. Specialized co-processors have recently
emerged with the purpose of reducing the power envelope
constraints, while improving the overall performance on
scenarios such as machine learning [26]. In this regard,
we observe that other scientific fields can benefit from this
trend by adopting part of these technologies. In fact, energy
consumption in HPC is considered one of the main limiting
factors towards the exascale supercomputer [27].

In this section, we briefly describe the most relevant
technical aspects of the Movidius Myriad 2 VPU [13], [14],
in the context of the Intel Neural Compute Stick (NCS)
platform [16]. Our goal is to understand how this type of
low-power co-processors could potentially be integrated for
computation offloading on HPC.

A. Vision Processing Unit

The Myriad 2 VPU is designed as a 28-nm co-processor
that provides high-performance tensor acceleration. The
chip dissipates less than 1W [13]. High-level APIs allow
application programmers to easily take advantage of its
features and, thus, enhance programming productivity. In
addition, the software-controlled memory subsystem enables
fine-grained control on different workloads, if required. The
term “vision” is employed due to the original purpose of
the VPU, which was meant to accelerate computer vision
applications on the “edge” [28].

The architecture of this chip is inspired by Agarwal’s ob-
servation, which states that beyond a certain frequency limit
for any particular design and target process technology, the
cost is quadratic in power for linear increases in operating
frequency [14]. Following this statement, the Myriad 2 VPU

SHAVE VLIW Vector Processor

VRF 32×128-bit / 12 ports

IRF 32×32-bit / 18 ports

PEU BRULSU0 LSU1 IAU SAU VAU CMU

D-cache

1KB

I-cache

2KB

Connection Matrix

(CMX)

SRAM 2MB

128-bit CMX

+ L2 ports

64-bit CMX ports

4GB LPDDR3

Memory

64-bit DDR

ports

L2-cache

256KB

DDR

Cont.

128-bit AXI

DCUIDC

Figure 1: High-level representation of one of the SHAVE
vector processors featured on the Myriad 2 VPU [14]. The
Connection Matrix (CMX) enables seamless interaction be-
tween the vector processors and other hardware components.

Application Host

Neural Compute API

Application

Neural Compute Stick

RISC

Processor

4GB LPDDR3 Memory

Hardware Accelerators

CMX

USB 3.0

Interface

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

S
H

A
V

E

L2-cache

Myriad 2 VPU

···

···

Figure 2: Approximate implementation of the Myriad 2 VPU
used within the Neural Compute Stick (NCS) platform [16].
The Neural Compute API allows us to coordinate the exe-
cution on the VPU of one or more NCS devices [18].

is designed featuring 12 highly-parallelizable vector proces-
sors, named Streaming Hybrid Architecture Vector Engines
(SHAVE). Each SHAVE processor contains wide register
files and several functional units. These are controlled by
Variable-Length Long Instruction Word (VLLIW) packets.
Hence, enabling seamless SIMD operations on the chip. The
nominal frequency is 600MHz.

Figure 1 illustrates a high-level diagram of one of the
SHAVE processors and the interactions with other compo-
nents of the Myriad 2 VPU. The main vector register file
(VRF) has 128-bit × 32 entries and 12 ports. A general
register file (IRF) is also available with 32-bit × 32 entries
and 18 ports. Among the functional units of each SHAVE
processor, we highlight the 128-bit Vector Arithmetic Unit
(VAU), the 128-bit Compare-and-Move Unit (CMU), the 32-
bit Scalar Arithmetic Unit (SAU), and the 32-bit Integer
Arithmetic Unit (IAU). The chip supports 8, 16, 32, and
partially 64-bit integer operations, as well as native FP16

Application

SourceImage TargetDevice

ImageFolder

MPIStream

IntelCPU

NvGPU

IntelVPU···

···

(1,N)(1,N)

NCAPI

OpenCV

Figure 3: Class diagram specification of the NCSw frame-
work. The simple modular design allows us to provide
implementations for new kind of devices (e.g., FPGA).

1 ...
2 // Load the graph with the input image
3 mvncLoadTensor(graph, (half *)img, size, NULL);
4
5 /**
6 * Perform other overlapping computations *
7 **/
8
9 // Retrieve the inference result from the NCS

10 mvncGetResult(graph, (half **)&result,
11 &result_size, &userParam);
12 ...

Listing 1: Source code example in C that illustrates how to
conduct inference on the NCS using the NCAPI [18].

and FP32 arithmetic1. Each of these functional units can
be operated independently through the VVLIW instruc-
tion packets. In addition, two 64-bit Load-and-Store Units
(LSU) enable data transferring among the SHAVE proces-
sors through a shared, multi-ported 2MB memory block,
named Connection Matrix (CMX). The CMX features 16
blocks of 128KB, comprising four 32KB RAM instances
organized as 4096 words of 64-bits each, independently
arbitrated. The variant used in our tests (MA2450) features
a global stacked memory of 4GB LPDDR3. The memory
fabric of the Myriad 2 VPU is designed for low-latency by
endorsing data locality. It is also mostly software-controlled
for flexibility purposes, as previously stated. This allows the
VPU to support different kinds of application workloads.

Alongside the SHAVE vector processors, the chip fea-
tures a Streaming Image Processing Pipeline (SIPP), which
contains fully programmable hardware-accelerated kernels
of common image processing operations [13]. For instance,
some of the kernels include tone-mapping, Harris Corner
detector, Histogram of Oriented Gradients (HoG) edge op-

1The maximum theoretical performance claimed by the manufacturer is
1000 Gflops using FP16 arithmetic [14].

erator, luminance / chrominance denoising, and others. The
typical configuration for the kernels is 5×5 per target output
pixel. Each hardware-accelerated kernel is connected to the
CMX memory block using a crossbar. A local controller on
each SIPP filter manages the read / writeback of the results
to the CMX. Thus, combining operations on the SHAVE
vector processors and the hardware-accelerated kernels is
feasible. The filters can output completely computed pixels
individually per cycle.

B. Neural Compute Stick Platform

The Intel Neural Compute Stick (NCS) platform [16]
is a System-on-Chip (SoC) implementation of the Myriad
2 VPU. A high-level overview of the device is illustrated
in Figure 2. The diagram depicts the approximate implemen-
tation used in the NCS platform (variant MA2450). The NCS
employs a total of 20 power islands, including one for each
of the 12 integrated SHAVE processors. This is critical to
effectively manage the power consumption of the SoC. Two
RISC processors manage the communication with the host
and the execution on the VPU (i.e., runtime scheduler). They
are also in charge of the peripherals in other implementations
(e.g., MIPI D-PHY) and running a Unix-based real-time OS
(RTOS). In the diagram, applications communicate with the
VPU using a USB 3.0 interface and the so-called Neural
Compute API (NCAPI) [18]. The main purpose of this API
is to enable the deployment of convolutional networks for
inference on the NCS2. When the NCAPI initializes and
opens a device, a firmware is loaded onto the NCS. At this
point, the device is ready to accept the network graph files
and execute commands to conduct inference on the VPU.

The NCAPI comprehends a set of operations that allow
applications to connect to the NCS, deploy a pre-trained
convolutional network model, obtain performance metrics
per layer, and more. The programming interface is available
in C/C++ and Python. For instance, in order to perform
inference on the device, the API follows a set of operations
that resemble the MPI non-blocking interface [30]. In this
case, instead of having a single, blocking “inference()”
function, the step is divided in two separate operations. First,
a load operation transfers the input and prepares the NCS for
execution. Thereafter, a wait operation blocks the process on
the host until the execution on the NCS has finished. Hence,
this model enables the design of decoupled strategies that
overlap computations while inference has been offloaded to
the NCS. In most cases, by the time that the host process
has to wait, the inference is already completed and the result
can be retrieved.

Listing 1 provides a source code example in C where
the NCAPI is utilized to perform inference on the VPU.
Error-checking is excluded for illustration purposes. In this

2Training these networks, however, is accomplished outside the scope of
the NCS using the regular Caffe [17] or Tensorflow [29] frameworks (i.e.,
the device is only used for inference).

example, the mvncLoadTensor() transfers a certain in-
put image to the NCS device and loads the pre-compiled
graph for execution. This will automatically coordinate the
data transfer with one of the RISC processors into the NCS.
It will also immediately queue the execution of the graph on
the SHAVE processors through the runtime scheduler. The
operation will return as soon as the data is transferred and the
execution is scheduled, without blocking the host process.
At this point, the application is able to overlap additional
computations while the inference has been offloaded to
the NCS (e.g., decode the next frame). Multi-device is
also supported, meaning that we could easily offload more
inference operations to other devices. When the result is
required, a call to mvncGetResult() will guarantee that
the host process is blocked until the inference has finished
and the result is ready. The output result is a list of labels
with the correspondent confidence, based on the input.

Note that fine-grained general-purpose computing using
C/C++ is also possible through the Movidus Development
Kit (MDK) [26], [31]. The MDK enables OpenCL support
and provides several optimized libraries designed for the
Myriad 2 VPU chip (e.g., LAMA, a linear algebra library).
Tools for debugging and profiling are also available. We
consider exploring the possibilities of using this development
kit for general-purpose computing in future work.

III. INFERENCE FRAMEWORK

We design and implement a very simple inference frame-
work using C/C++ that supports diverse types of target
devices. The framework, named Neural Compute Stick
Wrapper (NCSw), is mostly based on the use of Caffe [17]
in the context of the NCS platform. In addition, we integrate
the specific Caffe project forks optimized for Intel processors
and NVIDIA graphics cards to conduct our experiments.
This allows us to compare the inference performance with
the VPU chip. The source code is available on a public Git
repository3.

The NCSw framework is divided in several abstract
classes that represent the source of the input datasets and the
target (or where) to conduct inference (Figure 3). The aim is
to provide an easy-to-use implementation that could enable
the integration of new kinds of input sources (e.g., MPI
streams [32]) or target devices (e.g., FPGA) in the future.
The VPU implementation is based on the use of the NCAPI.
We use OpenEXR [33] half-precision class for converting
the pixel data from FP32 to FP16. This is the compatible
format for the Myriad 2 VPU [14].

Batch-processing is supported by defining a parallel,
multi-VPU implementation. This approach differs from the
traditional Caffe batched execution, which resizes the input
blob layer of the convolutional network to achieve better
data communication throughput (e.g., on GPUs). In this

3https://github.com/sergiorg-kth/ncs-wrapper

Main

Process

VPU

#1

VPU

#4

Thread

#4

Thread

#1

1 Fork

Threads

2 Load Inputs
(+Queue Exec.)

3 Run VPU

Kernels

4 Read Output

5 Join

Threads

Application Host NCS Devices

··· ···

······

······

······

······

Figure 4: Execution timeline of the parallel, multi-VPU
implementation of NCSw. In this example, the host process
offloads the execution to four threads, one per NCS device.

case, we schedule simultaneous inferences using the same
graph on multiple NCS devices. The main host process is
responsible for connecting to each device and offloading the
execution. By default, if the NCSw framework is compiled
with OpenMP support, the multi-VPU implementation will
become multi-threaded. Hence, the host process will spawn
multiple threads to handle the execution on each NCS device
available. The threads will concurrently transfer the source
input and retrieve the output, thus, effectively overlapping
the communication with the RISC processor on the SoC and
maximizing the bandwidth utilization.

Figure 4 illustrates an example timeline for the parallel,
multi-VPU implementation using four different NCS de-
vices. Here, the host process begins by spawning one thread
per VPU. These threads will then load different inputs into
the global LPDDR3 memory of each NCS. This fact will
guarantee that, while the next input is being loaded on the
succeeding device, the runtime scheduler in the preceding
device has started the execution on the SHAVE processors
and SIPP hardware-accelerated filters. Thereafter, the results
are retrieved in the queueing order to guarantee an overlap
with the rest of the NCS devices. We follow a simple static
scheduling (i.e., round-robin) for this purpose.

Applications can decide whether to use one or more VPUs

https://github.com/sergiorg-kth/ncs-wrapper

Figure 5: Our testbed contains 8 different NCS devices,
where 6 devices are connected using two USB 3.0 HUBs and
2 devices are connected using the ports of the motherboard.

simultaneously, or to define groups of the same target type.
In other words, different sources can be easily connected to
the same or multiple targets. Therefore, some applications
might choose to run a specific subset of inputs on a GPU,
and at the same time another subset on two different groups
that connect to several VPUs using the described approach.

IV. EXPERIMENTAL RESULTS

In this section, we analyze three implementations inside
the NCSw framework that target a CPU, a GPU, and a
multi-VPU configuration, respectively. We evaluate these
implementations in terms of inference performance and con-
fidence error. For this purpose, we use the Intel-optimized
Caffe-MKL fork (v1.0.7) for Intel processors, the NVIDIA-
optimized Caffe-cuDNN fork (v0.16.4) for NVIDIA graphic
cards, and the Neural Compute SDK (v1.12.00.01) for the
Myriad 2 VPU on the NCS. Thus, we aim to take advantage
of the compute capabilities of each of these devices using
reference implementations provided by the manufacturers.

The simulations are conducted in a workstation with
two four-core Intel Xeon E5-2609v2 processors running
at 2.5GHz. The workstation is equipped with a total of
72GB DRAM. The graphics card is a Quadro K4000, with
3GB of GDDR5 and 768 CUDA cores. The NVIDIA driver
version is v384.81. The storage consists of two 4TB HDD
(WDC WD4000F9YZ / non-RAID) and a 250GB SSD
(Samsung 850 EVO). The OS is Ubuntu Server 16.04.1
LTS with Kernel 4.4.0-62-generic. The NCSw framework is

compiled with gcc v5.4.0 and linked with OpenCV v2.4.9.1
to decode the input images. We compile Caffe with Intel
MKL v2018.1.163. For the GPU implementation, we use
CUDA v9.0, cuDNN v7.0.5.15-1, and NCCL v1.3.4-1.

Note that all the figures reflect the standard deviation of
the samples as error bars. In addition, we omit from our
results the decoding time per image, but account for the
data transferring time from the host to the target device.
We also enable OpenMP to support multi-threading on the
multi-VPU configuration. In this case, a maximum of 8 si-
multaneous NCS devices are employed, where 6 devices are
connected using two USB 3.0 HUBs (Sandstrøm 164903)
and 2 devices are connected using directly the USB 3.0 ports
of the motherboard (Figure 5). Lastly, we use the traditional
Caffe batch-based processing on the CPU and GPU tests.

A. Performance Evaluation
With the purpose of evaluating the image classification

performance of the three aforementioned implementations,
we use one of the reference datasets from the ImageNet
database [15]. This project is an on-going research effort
that aims to provide researchers around the world with an
easily accessible, large image database organized according
to the WordNet hierarchy [34]. Each meaningful concept
in ImageNet is described by multiple word phrases (i.e.,
”synonym set” or ”synset”), and contains on average 1000
images to illustrate its definition.

The success of ImageNet is largely due to the Large Scale
Visual Recognition Challenge (ILSVRC). This challenge is a
benchmark in object category classification and detection on
hundreds of object categories and millions of images. Since
its inception in 2010, ILSVRC has become the de-facto
standard benchmark for large-scale object recognition [35].
The publicly released dataset contains a set of manually
annotated training and test images.

In this regard, we use the Validation dataset from the
ILSVRC 2012 challenge4 to conduct our experiments. This
dataset contains 50000 images in total. Each target device in
our implementation uses the pre-trained BAIR GoogLeNet
network5 from the Berkeley Vision and Learning Cen-
ter (BVLC). This network is trained specifically for the
ILSVRC 2012 challenge, as described by Szegedy et al. [3].
The input geometry of the network is 224x224. The mean
values are retrieved directly from the ILSVRC 2012 training
dataset. Finally, the Caffe engine is set to “MKL2017” for
the CPU-based implementation.

Using a multi-VPU configuration, we determine that
the Myriad 2 VPU provides a very well-balanced ratio
between performance and power consumption. Figure 6a
reports the throughput in images per second (img·s-1) for the
CPU, GPU, and multi-VPU configurations. We use batch-
processing mode with 8 inputs to match the number of

4http://image-net.org/challenges/LSVRC/2012
5http://dl.caffe.berkeleyvision.org/bvlc googlenet.caffemodel

http://image-net.org/challenges/LSVRC/2012
http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel

Set-1 Set-2 Set-3 Set-4 Set-5
0

25

50

75

100

125

Validation Dataset

T
hr

ou
gh

pu
t

(i
m

ag
es

/s
) CPU GPU VPU (Multi)

(a) Inference Performance per subset / 8×Input (batch)

1 2 4 8
0

2

4

6

8

10

Batch Input Size

N
or

m
.P

er
f.

Sc
al

in
g

CPU GPU VPU (Multi)

(b) Relative Inference Performance per batch size

Figure 6: (a) Inference performance (per subset) of the ILSVRC 2012 Validation dataset using batch-mode on the CPU,
GPU, and multi-VPU configurations. (b) Normalized performance scaling per batch size relative to the baseline of a single
input for each device type. Note that, in both figures, the number of active VPU chips is coupled with the input size (1-8).

Set-1 Set-2 Set-3 Set-4 Set-5
0

0.1

0.2

0.3

0.4

Validation Dataset

In
fe

re
nc

e
E

rr
or

CPU (FP32) VPU (FP16)

(a) Top-1 Inference Error per subset

Set-1 Set-2 Set-3 Set-4 Set-5
0

2 · 10−3

4 · 10−3

6 · 10−3

Validation Dataset

A
bs

.D
iff

.E
rr

or

CPU (FP32) vs. VPU (FP16)

(b) Confidence Difference per subset

Figure 7: (a) Top-1 prediction error (per subset) of the ILSVRC 2012 Validation dataset using the CPU (FP32) and VPU
(FP16) implementations. (b) Absolute confidence difference error after filtering the top-1 miss-predictions between the CPU
and VPU implementations.

simultaneous VPUs available in our testbed (i.e., eight NCS
devices). For evaluation purposes, we divide the complete
validation dataset in groups of 10000 images, forming 5
subsets in total. From this figure, we can determine that
the throughput using eight Myriad 2 VPU chips is approx-
imately 77.2 img·s-1 (12.9ms per inference). The optimized
Caffe framework on the CPU is 40.7% slower, with an
average of 44.0 img·s-1 (22.7ms per inference). However, the
GPU-based implementation produces similar results, with a
throughput of 74.2 img·s-1 on average per subset (13.5ms
per inference).

If we compare the performance scalability of each im-
plementation, we observe an almost ideal scaling when
increasing the number of active VPU chips. Figure 6b
illustrates the relative performance scaling during inference
by varying the batch input size on the CPU, GPU, and
multi-VPU configurations. The figure reflects how well each
implementation scales independently. Hence, the values are
normalized per device type using their respective single-
input test as reference for the normalization (i.e., 26.0ms
for the CPU, 25.9ms for the GPU, and 100.7ms for the
VPU). We use only one of the subsets of 10000 images
from the validation dataset. In this case, we determine that

the execution time required per inference is approximately
reduced 50% when duplicating the number of active VPU
chips, reaching a performance increase factor of close to 8×
for the last case. This matches the number of NCS devices.
Nonetheless, a small penalty is observed due to the thread-
management overhead and the data transferring involved. On
the other hand, the performance of the CPU implementation
is barely affected, with an improvement of only 14.7% for
the last case (1.1×). Similar results are observed for the GPU
implementation, which improves only 92.5% for the last case
(1.9×). Thus, both implementations reflect relatively poor
scaling in comparison.

B. Error Rate Comparison

Using the same Validation dataset from the ILSVRC 2012
challenge, we evaluate the confidence accuracy of each im-
plementation. Our goal is to understand how the differences
in floating point precision can affect the predictions from
the pre-trained BAIR GoogLeNet network model.

We estimate the miss-prediction rate by extracting the
labels from the Validation Bounding Box Annotations dataset
of the ILSVRC 2012 challenge. For the inference error rate,
we use a top-1 estimation, as Szegedy et al. [3] describe.

1 2 4 8
0

1

2

3

4

5

Batch Input Size

T
hr

ou
gh

tp
ut

(i
m

ag
es

/W
) CPU GPU VPU (Multi)

(a) Throughput-TDP Comparison per batch size

1 2 4 8 16
0
30
60
90
120
150
180

Batch Input Size

T
hr

ou
gh

pu
t

(i
m

ag
es

/s
) CPU GPU VPU (Multi)

(b) Projected Inference Performance per batch size

Figure 8: (a) Throughput performance comparison per Watt using the CPU, GPU, and multi-VPU configurations. (b) Inference
performance per batch size on a subset of the ILSVRC 2012 Validation dataset using the CPU, GPU, and multi-VPU
configurations. The dashed lines represent the projected value of the multi-VPU configuration if the scaling continues. Note
that, in both figures, the number of active VPU chips is coupled with the input size (1-16).

This estimation implies to accept only those predictions
whose correct label has the highest confidence. In addition,
we compare the absolute confidence difference between the
CPU implementation6, which uses FP32 precision, and the
VPU implementation, which uses FP16. This value reflects
the average error after filtering the incorrect predictions
according to the top-1 estimation.

With subtle inference error differences, we observe that
the use of FP16 arithmetic on the Myriad 2 VPU does not
have a major impact in the overall miss-prediction rate.
Figure 7a illustrates the top-1 inference error per subset
using the CPU and VPU implementations. Once again, we
use the validation dataset with 50000 images, and divide it
in groups of 10000 subsets. From the figure, we estimate
that the top-1 inference error is 31.92% on average using
the VPU. Surprisingly, the reference CPU implementation
features a slightly worse error of 32.01%. As a result, given
that the top-1 inference error using the VPU implementation
with FP16 arithmetic only varies 0.09% in comparison, we
confirm negligible differences due to arithmetic precision.

Looking at the absolute confidence error, we estimate
once again that the use of FP16 arithmetic on the Myriad
2 VPU does not considerably affect the network output.
Figure 7b depicts the absolute confidence difference per
subset using the VPU implementation in comparison with
the CPU implementation, after filtering the top-1 miss-
predictions. In this case, the average difference per subset is
estimated at 0.44% on average.

V. DISCUSSION

The previous results indicate that the use of VPUs can
be beneficial for certain operations, such as tensor pro-
cessing. Even though we observe that the execution time
per inference using one chip is 4× slower compared to

6Even though the GPU implementation is excluded from the comparison,
we confirm that it provides equivalent confidence results.

a reference CPU / GPU implementation, we demonstrate
equivalent performance results by using a parallel, multi-
VPU configuration with eight NCS devices. Yet, we have not
accounted for the power consumption required on each case.
In fact, the estimated thermal-design power (TDP) for both
the Intel Xeon E5-2609v2 and the NVIDIA Quadro K4000
GPU used in our experiments is 80W. In comparison, the
TDP of the Myriad 2 VPU is 0.9W, with an overall estimated
peak consumption of 2.5W for the NCS device [36], [37].
If we assume that the maximum power consumption was
required7, we can estimate a throughput function per Watt
based on the number of inferences conducted per second:

ThroughputWatt =
Images · Second−1

TDP
(1)

By following this metric, we confirm that, in theory, VPUs
could provide a throughput per Watt of over 3× higher in
comparison. Figure 8a reflects the performance measured as
images per Watt (img·W-1) for the CPU, GPU and multi-
VPU configurations. From this figure, we observe that the
throughput is 3.97 img·W-1 when using one VPU. Increasing
the number of simultaneous VPU chips does not largely
affect this ratio, except for a small performance penalty
due to the required data transfers. The CPU features a
theoretical throughput of 0.55 img·W-1 in the last case. The
GPU shows similar results, with 0.93 img·W-1. Nonetheless,
actual power measurements would be required in future
work to understand the practical differences (i.e., the TDP
can be far from the real power draws per device).

On the other hand, if we assume that the ideal scaling
is maintained as we increase the number of VPU chips,
we could obtain power and thermal dissipation benefits
while still improving the average execution time required

7Technically, the CPU and other components are necessary to connect to
the NCS (e.g., USB controller), which are not included in the estimation.
Here, we only account for the operational TDP of each device.

per inference. Figure 8b reflects this comparison using the
CPU, GPU, and multi-VPU configurations. We vary the
batch size from 1 to 16 inputs on the CPU and GPU
implementations. In the case of the multi-VPU, we show the
projected execution time after the number of NCS devices
available is exceeded (i.e., eight devices). From this figure,
we determine that the CPU and GPU implementations do
not illustrate relevant performance improvements, with a
maximum of 44.5 img·s-1 and 79.9 img·s-1, respectively.
The Myriad 2 VPU, however, has a projected throughput of
153.0 img·s-1 using 16 VPU chips. This is a factor of 3.4×
improvement over the CPU implementation, and a factor of
1.9× over the GPU version.

Despite these positive observations, we still consider that
VPUs should complement the utilization of more powerful
CPU and GPU architectures. For instance, it has been largely
demonstrated that GPUs can be ideal for deep learning [38],
[39]. Moreover, recent architectures, such as the NVIDIA
Volta V100 [40] or the Intel Nervana Neural Network
Processor [41], have been specifically designed for training
and inference. Consequently, we foresee the potential of
integrating the high-performance vector architecture featured
on the Myriad 2 VPU in the form-factor of a co-processor
to reduce the overall power consumption of future HPC
clusters. Energy consumption is considered one of the main
limiting factors towards the exascale supercomputer [27], as
we have previously motivated. In such case, one or several
of these co-processors could be included on each node.
Scientific applications could then use the VPU chips to
offload certain operations that involve tensor computation,
avoiding the utilization of the CPU (or GPU) on less-critical
tasks. We consider to explore this path in the future.

VI. RELATED WORK

The adoption of power-efficient co-processors for com-
puter vision and machine learning on the “edge” has been
widely studied for robotics and the Internet-of-Things (IoT).
For instance, Georgiev et al. [42] present an integrated
sensing system that uses low-power DSP co-processors of
commodity mobile devices to perform complex audio infer-
ences. More specifically, Dexmont et al. [37] conduct a study
of the Myriad 2 VPU for low-power robotics applications.

In the context of HPC, the use of co-processors is also
frequent, specially with the emergence of the “CPU +
Accelerator” model in this field [24]. Byun et al. [43]
study the Intel Xeon Phi architecture [44] as co-processor
for machine learning applications. Tan et al. [45], on the
other hand, propose the use of FPGAs as co-processor to
accelerate Next-Generation Sequencing (NGS) applications.
Notwithstanding, we observe that the integration of low-
power co-processors for computation offloading is, in most
cases, not considered.

Lastly, we note that the work by Ionica et al. [26] shares
some similarities. Here, the authors provide a comprehensive

overview of the Myriad 1 VPU chip for scientific computing.
In this regard, an implementation of a custom DGEMM
operation that uses CMX tiling is provided, and performance
results in terms of Gflops and Gflops·W-1 (estimated through
the TDP) are illustrated as well. While their work focuses
on the opportunities that the Myriad 1 VPU chip brings for
general-purpose computing, we present the technical aspects
of the Myriad 2 VPU and illustrate performance results
during inference on convolutional networks using multiple
chips. Thus, we consider both works complementary.

VII. CONCLUSION

The emergence of machine learning and data-centric
applications on HPC poses several constraints on general-
purpose processors [19], [20]. As such, power consumption
and thermal dissipation become major concerns. In this
work, we have provided an overview of the Vision Pro-
cessing Unit (VPU) as co-processor for inference on HPC.
In particular, we have explored the most relevant technical
details of the Myriad 2 VPU [13], [14], in the context of the
Intel Neural Compute Stick (NCS) platform [16]. To support
our experiments, we have also presented a small inference
framework, named NCSw. This framework contains a par-
allel, multi-VPU implementation that efficiently coordinates
the execution on more than one NCS device.

Using a pre-trained network model based on the
GoogLeNet work by Szegedy et al. [3], we have observed
that the performance during inference on a single VPU
chip is only 4× slower in comparison with reference CPU
and GPU implementations. By employing a multi-VPU
configuration, however, we have demonstrated equivalent
performance results. Yet, the expected thermal-design power
(TDP) can still be reduced by a factor of 8×. Moreover, we
have confirmed negligible confidence differences by estimat-
ing the top-1 error rate, despite requiring FP16 arithmetic
precision on the VPU for performance reasons.

As future work, we expect to conduct a thorough study
of the possibilities of the Myriad 2 VPU as co-processor for
task offloading on HPC. This would imply extending our
work and integrating the VPU chip as a conventional vector
processor for general-purpose computing. In addition, we ex-
pect to compare the VPU with highly-specialized accelerator
chips, such as the NVIDIA Volta V100 architecture [40].
This would give us a better understanding of the perfor-
mance and power consumption benefits in contrast with
recent, novel architectures designed for machine learning.

ACKNOWLEDGMENT

The experimental results were performed on resources
provided by the Swedish National Infrastructure for Com-
puting (SNIC) at PDC Centre for High-Performance Com-
puting (PDC-HPC). The work was funded by the European
Commission through the SAGE project (Grant agreement
no. 671500 / http://www.sagestorage.eu).

http://www.sagestorage.eu

REFERENCES

[1] H. Brink, J. W. Richards, D. Poznanski, J. S. Bloom, J. Rice,
S. Negahban, and M. Wainwright, “Using machine learning
for discovery in synoptic survey imaging data,” Monthly
Notices of the Royal Astronomical Society, vol. 435, no. 2,
pp. 1047–1060, 2013.

[2] S. E. Thompson, F. Mullally, J. Coughlin, J. L. Christiansen,
C. E. Henze, M. R. Haas, and C. J. Burke, “A machine
learning technique to identify transit shaped signals,” The
Astrophysical Journal, vol. 812, no. 1, p. 46, 2015.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1–9.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3431–3440.

[5] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data Mining
with Big Data,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 26, no. 1, pp. 97–107, 2014.

[6] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan
Kaufmann, 2016.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), 2015, pp. 448–456.

[8] SAGE Consortium, “The SAGE project: Data storage for
extreme scale,” http://bit.ly/2eSYPRH, 2016, [On-Line].

[9] M. Feldman, “Oak Ridge readies Summit supercomputer
for 2018 debut,” in: Top500.org, http://bit.ly/2ERRFr9, 2017,
[On-Line].

[10] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep
neural networks with low precision multiplications,” arXiv
preprint arXiv:1412.7024, 2014.

[11] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal,
W. Constable, O. Elibol, S. Gray, S. Hall, L. Hornof, A. Khos-
rowshahi, C. Kloss, R. J. Pai, and N. Rao, “Flexpoint: An
adaptive numerical format for efficient training of deep neural
networks,” in Advances in Neural Information Processing
Systems 30 (NIPS 2017), 2017, pp. 1740–1750.

[12] D. Schneider, “US supercomputing strikes back,” IEEE Spec-
trum, vol. 55, no. 1, pp. 52–53, 2018.

[13] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick,
and D. Donohoe, “Myriad 2: Eye of the computational vision
storm,” in 2014 IEEE Hot Chips 26 Symposium (HCS).
IEEE, 2014, pp. 1–18.

[14] B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney,
R. Richmond, M. O’Riordan, and V. Toma, “Always-on
Vision Processing Unit for mobile applications,” IEEE Micro,
vol. 35, no. 2, pp. 56–66, 2015.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual
Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[16] Intel Corporation, “Intel democratizes deep learning appli-
cation development with the launch of the Movidius Neural
Compute Stick,” in: intel.com, http://intel.ly/2tH2Eh7, 2017,
[On-Line].

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolu-
tional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[18] Movidius / Intel Corporation, “Movidius Neural Com-
pute SDK for the Neural Compute Stick platform,” in:
GitHub.com, http://bit.ly/2G1i9rm, 2017, [On-Line].

[19] B. Jang, D. Schaa, P. Mistry, and D. Kaeli, “Exploiting
memory access patterns to improve memory performance in
data-parallel architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 1, pp. 105–118, 2011.

[20] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP:
Indirect Memory Prefetcher,” in Proceedings of the 2015 48th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

[21] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware
memory hierarchy for energy-efficient GPU architectures,” in
Proceedings of the 2013 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE,
2013, pp. 86–98.

[22] S. Lloyd and M. Gokhale, “In-memory data rearrangement
for irregular, data-intensive computing,” Computer, vol. 48,
no. 8, pp. 18–25, 2015.

[23] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang,
A. Boroumand, S. Ghose, and O. Mutlu, “Accelerating pointer
chasing in 3D-stacked memory: Challenges, mechanisms,
evaluation,” in Computer Design (ICCD), 2016 IEEE 34th
International Conference on. IEEE, 2016, pp. 25–32.

[24] J. Nickolls and W. J. Dally, “The GPU computing era,” Pro-
ceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), vol. 30, no. 2,
2010.

[25] C. Gregg and K. Hazelwood, “Where is the data? Why
you cannot debate CPU vs. GPU performance without the
answer,” in Performance Analysis of Systems and Software
(ISPASS), 2011 IEEE International Symposium on. IEEE,
2011, pp. 134–144.

[26] M. H. Ionica and D. Gregg, “The Movidius Myriad archi-
tecture’s potential for Scientific Computing,” IEEE Micro,
vol. 35, no. 1, pp. 6–14, 2015.

http://bit.ly/2eSYPRH
http://bit.ly/2ERRFr9
http://intel.ly/2tH2Eh7
http://bit.ly/2G1i9rm

[27] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio,
J.-C. Andre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braun-
schweig, F. Cappello, B. Chapman, X. Chi, A. Choudhary,
S. Dosanjh, T. Dunning, S. Fiore, A. Geist, B. Gropp,
R. Harrison, M. Hereld, M. Heroux, A. Hoisie, K. Hotta,
Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes,
B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lu-
cas, B. Maccabe, S. Matsuoka, P. Messina, P. Michielse,
B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima, M. E.
Papka, D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skin-
ner, M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar,
S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. v. d. Steen, J. Vetter, P. Williams, R. Wis-
niewski, and K. Yelick, “The international exascale software
project roadmap,” International Journal of High Performance
Computing Applications, vol. 25, no. 1, pp. 3–60, 2011.

[28] D. Moloney, “1TOPS/W software programmable media pro-
cessor,” in 2011 IEEE Hot Chips 23 Symposium (HCS).
IEEE, 2011, pp. 1–24.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[30] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using ad-
vanced MPI: Modern features of the message-passing inter-
face. MIT Press, 2014.

[31] Intel Corporation, “Myriad Development Kit (MDK): Devel-
opment suite for the MA2x5x family of VPUs,” in: Movid-
ius.com, http://bit.ly/2DF6bpY, 2016, [On-Line].

[32] I. B. Peng, S. Markidis, E. Laure, D. Holmes, and M. Bull,
“A data streaming model in MPI,” in Proceedings of the 3rd
Workshop on Exascale MPI (ExaMPI). ACM, 2015, p. 2.

[33] F. Kainz, R. Bogart, and P. Stanczyk, “Technical introduction
to OpenEXR,” Industrial Light and Magic, 2009.

[34] G. A. Miller, “WordNet: A lexical database for English,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41,
1995.

[35] D. Gershgorn, “The data that transformed AI research, and
possibly the world,” in: Quartz, http://bit.ly/2uwyb8R, 2017,
[On-Line].

[36] N. Oh, “Intel launches Movidius Neural Compute Stick,” in:
AnandTech, http://bit.ly/2DY5e8X, 2017, [On-Line].

[37] D. Pena, A. Forembski, X. Xu, and D. Moloney, “Benchmark-
ing of CNNs for low-cost, low-power robotics applications,”
Proceedings of the Workshop on New Frontiers for Deep
Learning in Robotics (RSS 2017), 2017.

[38] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep
unsupervised learning using graphics processors,” in Proceed-
ings of the 26th Annual International Conference on Machine
Learning (ICML09). ACM, 2009, pp. 873–880.

[39] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer
networks in unsupervised feature learning,” in Proceedings of
the 14th International Conference on Artificial Intelligence
and Statistics Conference (AISTATS 2011), 2011, pp. 215–
223.

[40] NVIDIA Corporation, “NVIDIA Tesla V100 GPU Architec-
ture,” http://bit.ly/2nzeLM7, 2017, [On-Line].

[41] Intel Corporation, “Intel Nervana Neural Network Processor:
Architecture update,” in: intel.com, http://intel.ly/2qXgMXb,
2017, [On-Line].

[42] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo,
“DSP.Ear: Leveraging co-processor support for continuous
audio sensing on smartphones,” in Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems
(SenSys 2014). ACM, 2014, pp. 295–309.

[43] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron,
V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
P. Michaleas, L. Milechin, J. Mullen, A. Prout, A. Rosa,
S. Samsi, C. Yee, and A. Reuther, “Benchmarking data analy-
sis and machine learning applications on the Intel KNL many-
core processor,” in High Performance Extreme Computing
Conference (HPEC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[44] G. Chrysos, “Intel Xeon Phi coprocessor - The architecture,”
Intel White Paper, 2014.

[45] G. Tan, C. Zhang, W. Tang, P. Zhang, and N. Sun, “Acceler-
ating irregular computation in massive short reads mapping
on FPGA co-processor,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 5, pp. 1253–1264, 2016.

http://bit.ly/2DF6bpY
http://bit.ly/2uwyb8R
http://bit.ly/2DY5e8X
http://bit.ly/2nzeLM7
http://intel.ly/2qXgMXb

	Introduction
	Background
	Vision Processing Unit
	Neural Compute Stick Platform

	Inference Framework
	Experimental Results
	Performance Evaluation
	Error Rate Comparison

	Discussion
	Related Work
	Conclusion
	References

