39,652 research outputs found

    Heat Fluctuations in Brownian Transducers

    Get PDF
    Heat fluctuation probability distribution function in Brownian transducers operating between two heat reservoirs is studied. We find, both analytically and numerically, that the recently proposed Fluctuation Theorem for Heat Exchange [C. Jarzynski and D. K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)] has to be modified when the coupling mechanism between both baths is considered. We also extend such relation when external work is present. Our work fixes the domain of applicability of the theorem in more realistic operating systems.Comment: Comments are welcom

    Nonintegrable Schrodinger Discrete Breathers

    Full text link
    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrodinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.Comment: 42 pages, 28 figures. to be published in CHAOS (December 2004

    Tracing out the Northern Tidal Stream of the Sagittarius Dwarf Spheoridal Galaxy

    Full text link
    The main aim of this paper is to report two new detections of tidal debris in the northern stream of the Sagittarius dwarf galaxy located at 45 arcdeg and 55 arcdeg from the center of galaxy. Our observational approach is based on deep color-magnitude diagrams, that provides accurate distances, surface brightness and the properties of stellar population of the studied region of this tidal stream. The derived distances for these tidal debris wraps are 45 kpc and 54 kpc respectively.We also confirm these detections with numerical simulations of the Sagittarius dwarf plus the Milky Way. The model reproduces the present position and velocity of the Sagittarius main body and presents a long tidal stream formed by tidal interaction with the Milky Way potential. This model is also in good agreement with the available observations of the Sagittarius tidal stream. We also present a method for estimating the shape of the Milky Way halo potential using numerical simulations. From our simulations we obtain an oblateness of the Milky Way dark halo potential of 0.85, using the current database of distances and radial velocities of the Sagittarius tidal stream. The color-magnitude diagram of the apocenter of Sagittarius shows that this region of the stream shares the complex star formation history observed in the main body of the galaxy. We present the first evidence for a gradient in the stellar population along the stream, possibly correlated with its different pericenter passages. (abridged)Comment: 43 pages (including 15 figures; for high resolution color figures, please contact [email protected]). Submitted to Ap

    3He-rich SEP Events Observed by STEREO-A

    Full text link
    Using the SIT (Suprathermal Ion Telescope) instrument on STEREO-A we have examined the abundance of the rare isotope 3He during the rising activity phase of solar cycle 24 between January 2010 and December 2011. We have identified six solar energetic particle (SEP) events with enormous abundance enhancements of 3He (3He/4He >1). The events were short lasting, typically ~0.5-1 day and most of them occurred in association with high-speed solar wind streams and corotating interaction regions. With one exception the events were not associated with ~100 keV solar electron intensity increases. The events showed also enhanced NeS/O and Fe/O ratios. The solar images indicate that the events were generally associated with the active regions located near a coronal hole.Comment: accepted for publication in AIP Conference Proceedings for 'Thirteenth International Solar Wind Conference

    Molecular Realism in Default Models for Information Theories of Hydrophobic Effects

    Get PDF
    This letter considers several physical arguments about contributions to hydrophobic hydration of inert gases, constructs default models to test them within information theories, and gives information theory predictions using those default models with moment information drawn from simulation of liquid water. Tested physical features include: packing or steric effects, the role of attractive forces that lower the solvent pressure, and the roughly tetrahedral coordination of water molecules in liquid water. Packing effects (hard sphere default model) and packing effects plus attractive forces (Lennard-Jones default model) are ineffective in improving the prediction of hydrophobic hydration free energies of inert gases over the previously used Gibbs and flat default models. However, a conceptually simple cluster Poisson model that incorporates tetrahedral coordination structure in the default model is one of the better performers for these predictions. These results provide a partial rationalization of the remarkable performance of the flat default model with two moments in previous applications. The cluster Poisson default model thus will be the subject of further refinement.Comment: 5 pages including 3 figure
    • 

    corecore