1,480 research outputs found
Proteus: A Hierarchical Portfolio of Solvers and Transformations
In recent years, portfolio approaches to solving SAT problems and CSPs have
become increasingly common. There are also a number of different encodings for
representing CSPs as SAT instances. In this paper, we leverage advances in both
SAT and CSP solving to present a novel hierarchical portfolio-based approach to
CSP solving, which we call Proteus, that does not rely purely on CSP solvers.
Instead, it may decide that it is best to encode a CSP problem instance into
SAT, selecting an appropriate encoding and a corresponding SAT solver. Our
experimental evaluation used an instance of Proteus that involved four CSP
solvers, three SAT encodings, and six SAT solvers, evaluated on the most
challenging problem instances from the CSP solver competitions, involving
global and intensional constraints. We show that significant performance
improvements can be achieved by Proteus obtained by exploiting alternative
view-points and solvers for combinatorial problem-solving.Comment: 11th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems. The final
publication is available at link.springer.co
On the effective potential in higher-derivative superfield theories
We study the one-loop quantum corrections for higher-derivative superfield
theories, generalizing the approach for calculating the superfield effective
potential. In particular, we calculate the effective potential for two versions
of higher-derivative chiral superfield models. We point out that the
equivalence of the higher-derivative theory for the chiral superfield and the
one without higher derivatives but with an extended number of chiral
superfields occurs only when the mass term is contained in the general
Lagrangian. The presence of divergences can be taken as an indication of this
equivalence.Comment: 14 page
Dynamical Chern-Simons modified gravity, Godel Universe and variable cosmological constant
We study the condition for the consistency of the G\"{o}del metric with the
dynamical Chern-Simons modified gravity. It turns out to be that this
compatibility can be achieved only if the cosmological constant is variable in
the space.Comment: 8 pages, references adde
Barrier Distributions as a Tool to Investigate Fusion and Fission
The recent availability of precisely measured fusion cross-sections has
enabled the extraction of a representation of the distribution of barriers
encountered during fusion. These representations, obtained from a variety of
reactions, provide a direct observation of how the structure of the fusing
nuclei changes the inter-nuclear potential landscape, thus affecting the fusion
probability. Recent experiments showing the effects of static quadrupole and
hexadecapole deformation, single-- and double-phonon states, transfer of
nucleons between two nuclei, and high lying excited states are reviewed. The
application of these concepts to the explanation of the anomalous
fission-fragment anisotropies observed following reactions with actinides is
discussed.Comment: 12 pages, To be published in the Proceedings of the NN 97 Conference,
Gatlinburg, Tennessee, June 1997 (Nucl. Phys. A
Can the Pioneer anomaly be of gravitational origin? A phenomenological answer
In order to satisfy the equivalence principle, any non-conventional mechanism
proposed to gravitationally explain the Pioneer anomaly, in the form in which
it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave
out of consideration its impact on the motion of the planets of the Solar
System as well, especially those orbiting in the regions in which the anomalous
behavior of the Pioneer probes manifested itself. In this paper we, first,
discuss the residuals of the right ascension \alpha and declination \delta of
Uranus, Neptune and Pluto obtained by processing various data sets with
different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second,
we use the latest determinations of the perihelion secular advances of some
planets in order to put on the test two gravitational mechanisms recently
proposed to accommodate the Pioneer anomaly based on two models of modified
gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered
Uranus and Neptune to perform a further, independent test of the hypothesis
that a Pioneer-like acceleration can also affect the motion of the outer
planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the
merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081.
Final version to appear in Foundations of Physic
Spin-parity dependent tunneling of magnetization in single-molecule magnets
Single-molecule magnets facilitate the study of quantum tunneling of
magnetization at the mesoscopic level. The spin-parity effect is among the
fundamental predictions that have yet to be clearly observed. It is predicted
that quantum tunneling is suppressed at zero transverse field if the total spin
of the magnetic system is half-integer (Kramers degeneracy) but is allowed in
integer spin systems. The Landau-Zener method is used to measure the tunnel
splitting as a function of transverse field. Spin-parity dependent tunneling is
established by comparing the transverse field dependence of the tunnel
splitting of integer and half-integer spin systems.Comment: 4 pages, 6 figure
Atmospheric aerosols at the Pierre Auger Observatory and environmental implications
The Pierre Auger Observatory detects the highest energy cosmic rays.
Calorimetric measurements of extensive air showers induced by cosmic rays are
performed with a fluorescence detector. Thus, one of the main challenges is the
atmospheric monitoring, especially for aerosols in suspension in the
atmosphere. Several methods are described which have been developed to measure
the aerosol optical depth profile and aerosol phase function, using lasers and
other light sources as recorded by the fluorescence detector. The origin of
atmospheric aerosols traveling through the Auger site is also presented,
highlighting the effect of surrounding areas to atmospheric properties. In the
aim to extend the Pierre Auger Observatory to an atmospheric research platform,
a discussion about a collaborative project is presented.Comment: Regular Article, 16 pages, 12 figure
Dislocation-induced spin tunneling in Mn-12 acetate
Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is
developed, that takes into account imperfections of the crystal structure and
is based upon the generalization of the Landau-Zener effect for incoherent
tunneling from excited energy levels. It is shown that linear dislocations at
plausible concentrations provide the transverse anisotropy which is the main
source of tunneling in Mn-12. Local rotations of the easy axis due to
dislocations result in a transverse magnetic field generated by the field
applied along the c-axis of the crystal, which explains the presence of odd
tunneling resonances. Long-range deformations due to dislocations produce a
broad distribution of tunnel splittings. The theory predicts that at subkelvin
temperatures the relaxation curves for different tunneling resonances can be
scaled onto a single master curve. The magnetic relaxation in the thermally
activated regime follows the stretched-exponential law with the exponent
depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR
Consistency analysis of a nonbirefringent Lorentz-violating planar model
In this work analyze the physical consistency of a nonbirefringent
Lorentz-violating planar model via the analysis of the pole structure of its
Feynman propagators. The nonbirefringent planar model, obtained from the
dimensional reduction of the CPT-even gauge sector of the standard model
extension, is composed of a gauge and a scalar fields, being affected by
Lorentz-violating (LIV) coefficients encoded in the symmetric tensor
. The propagator of the gauge field is explicitly evaluated
and expressed in terms of linear independent symmetric tensors, presenting only
one physical mode. The same holds for the scalar propagator. A consistency
analysis is performed based on the poles of the propagators. The isotropic
parity-even sector is stable, causal and unitary mode for .
On the other hand, the anisotropic sector is stable and unitary but in general
noncausal. Finally, it is shown that this planar model interacting with a
Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio
Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn-Acetate and FeBr
Resistivity measurements are reported for single crystals of
Mn-Acetate and FeBr. Both materials exhibit a
semiconductor-like, thermally activated behavior over the 200-300 K range. The
activation energy, , obtained for Mn-Acetate was 0.37 0.05
eV, which is to be contrasted with the value of 0.55 eV deduced from the
earlier reported absorption edge measurements and the range of 0.3-1 eV from
intramolecular density of states calculations, assuming = , the
optical band gap. For FeBr, was measured as 0.73 0.1 eV,
and is discussed in light of the available approximate band structure
calculations. Some plausible pathways are indicated based on the crystal
structures of both lattices. For Mn-Acetate, we also measured
photoconductivity in the visible range; the conductivity increased by a factor
of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm
(blue). X-ray irradiation increased the resistivity, but was insensitive
to exposure.Comment: 7 pages, 8 figure
- …
