Single-molecule magnets facilitate the study of quantum tunneling of
magnetization at the mesoscopic level. The spin-parity effect is among the
fundamental predictions that have yet to be clearly observed. It is predicted
that quantum tunneling is suppressed at zero transverse field if the total spin
of the magnetic system is half-integer (Kramers degeneracy) but is allowed in
integer spin systems. The Landau-Zener method is used to measure the tunnel
splitting as a function of transverse field. Spin-parity dependent tunneling is
established by comparing the transverse field dependence of the tunnel
splitting of integer and half-integer spin systems.Comment: 4 pages, 6 figure