443 research outputs found

    Straightforward method for the preparation of lysine-based double-chained anionic surfactants

    Get PDF
    Double-chained surfactants with potential biocompatibility have been prepared in high yields by lysine acylation with four natural saturated fatty acids (C(6) to C(12)) and with cis-undec-5-enoic acid. The surfactants were found to assemble into nanotubules in aqueous medium and, when mixed with a commercial cationic surfactant, to spontaneously form liposomes

    Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C

    Get PDF
    The human SFRS9/SRp30c belongs to the SR family of splicing regulators. Despite evidence that members of this protein family may be targeted by arginine methylation, this has yet to be experimentally addressed. In this study, we found that SFRS9 is a target for PRMT1-mediated arginine methylation in vitro, and that it is immunoprecipitated from HEK-293 lysates by antibodies that recognize both mono- and dimethylated arginines. We further observed that upon treatment with the methylation inhibitor Adox, the fluorescent EGFP-SFRS9 re-localizes to dot-like structures in the cell nucleus. In subsequent confocal analyses, we found that EGFP-SFRS9 localizes to nucleoli in Adox-treated cells. Our findings indicate the importance of arginine methylation for the subnuclear localization of SFRS9144657669CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Value of project management in university–industry R&D collaborations

    Get PDF
    Purpose: University–industry projects provide special challenges in understanding and expressing the values required of project management (PM) in delivering stakeholder benefits. This paper presents a framework for understanding, identifying and managing the values of PM in major university–industry R&D projects. Design/methodology/approach: The value framework identifies for each of the key stakeholders, the key PM values that may require to be managed and are largely derived from research literature. Empirical research then explores, prioritises and selects key PM values that need to be managed for a specific project. A large case study is used involving one university and one industry collaborating on a multi-million Euro initiative over six years. Empirical research was conducted by researchers who observed at close quarters, the challenges and successes of managing the competing values of key stakeholders. Findings: The value framework takes a stakeholders' perspective by identifying the respective PM values for each of six stakeholders: university–industry consortium, university, industry, R&D external entities, funding entity and society. Research limitations/implications: The research was performed using only one case study which limits the generalisability of its findings; however, the findings are presented as a decision support aid for project consortia in developing values for their own collaboration. Practical implications: Guidance and decision support are provided to multi-stakeholder research consortia when selecting values that need to be managed for achieving tangible and intangible project benefits. Originality/value: The paper demonstrates a proposed framework for designing and managing the value of PM in large multi-stakeholder university–industry R&D projects.INCT-EN - Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção(SFRH/BPD/111033/2015

    Non-Anticoagulant Heparan Sulfate from the Ascidian Phallusia nigra Prevents Colon Carcinoma Metastasis in Mice by Disrupting Platelet-Tumor Cell Interaction

    Full text link
    Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug

    Computational procedure to an accurate DFT simulation to solid state systems

    Get PDF
    The density functional theory has become increasingly common as a methodology to explain the properties of crystalline materials because of the improvement in computational infrastructure and software development to perform such computational simulations. Although several studies have shown that the characteristics of certain classes of materials can be represented with great precision, it is still necessary to improve the methods and strategies in order to achieve more realistic computational modeling. In the present work, strategies are reported in a systematic way for the accurate representation of crystalline systems. The crystalline compound chosen for the study as a case test was BaMoO4, both because of its potential technological application and because of the low accuracy of the simulations previously reported in the literature. The computational models were carried out with the B3LYP and WC1LYP functionals selected from an initial set containing eight hybrid functionals in conjunction with an all-electron basis set. Two different strategies were applied for improving the description of the initial models, both involving atomic basis set optimization and Hartree-Fock exchange percentage adjustment. The results obtained with the two strategies show a precision of structural parameters, band gap energy, and vibrational properties never before presented in theoretical studies of BaMoO4. Finally, a flowchart of good calculation practices is elaborated. This can be of great value for the organization and conduction of calculations in new research

    Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: Chain length symmetry effects

    Get PDF
    The use of amino acids for the synthesis of novel surfactants with vesicle-forming properties potentially enhances the biocompatibility levels needed for a viable alternative to conventional lipid vesicles. In this work, the formation and characterization of catanionic vesicles by newly synthesized lysine- and serine-derived surfactants have been investigated by means of phase behavior mapping and PFG-NMR diffusometry and cryo-TEM methods. The lysine-derived surfactants are double-chained anionic molecules bearing a pseudogemini configuration, whereas the serine-derived amphiphile is cationic and single-chained. Vesicles form in the cationic-rich side for narrow mixing ratios of the two amphiphiles. Two pairs of systems were studied: one symmetric with equal chain lengths, 2C(12)/C(12), and the other highly asymmetric with 2C(8)/C(16) chains, where the serine-based surfactant has the longest chain. Different mechanisms of the vesicle-to-micelle transition were found, depending on symmetry: the 2C12/C12 system entails limited micellar growth and intermediate phase separation, whereas the 2C(8)/C(16) system shows a continuous transition involving large wormlike micelles. The results are interpreted on the basis of currently available models for the micelle-vesicle transitions and the stabilization of catanionic vesicles (energy of curvature vs mixing entropy)

    Influence of different ECM-like hydrogels on neurite outgrowth induced by adipose tissue-derived stem cells

    Get PDF
    Mesenchymal stem cells (MSCs) have been proposed for spinal cord injury (SCI) applications due to their capacity to secrete growth factors and vesicles-secretome-that impacts important phenomena in SCI regeneration. To improve MSC survival into SCI sites, hydrogels have been used as transplantation vehicles. Herein, we hypothesized if different hydrogels could interact differently with adipose tissue-derived MSCs (ASCs). The efficacy of three natural hydrogels, gellan gum (functionalized with a fibronectin peptide), collagen, and a hydrogel rich in laminin epitopes (NVR-gel) in promoting neuritogenesis (alone and cocultured with ASCs), was evaluated in the present study. Their impact on ASC survival, metabolic activity, and gene expression was also evaluated. Our results indicated that all hydrogels supported ASC survival and viability, being this more evident for the functionalized GG hydrogels. Moreover, the presence of different ECM-derived biological cues within the hydrogels appears to differently affect the mRNA levels of growth factors involved in neuronal survival, differentiation, and axonal outgrowth. All the hydrogel-based systems supported axonal growth mediated by ASCs, but this effect was more robust in functionalized GG. The data herein presented highlights the importance of biological cues within hydrogel-based biomaterials as possible modulators of ASC secretome and its effects for SCI applications.This study is funded by Prémios Santa Casa Neurociências—Prize Melo e Castro for Spinal Cord Injury Research. This is also partially funded by EU-FP7-Health-2011-Collaborative Project 278612, Biohybrid—Templates for peripheral nerve regeneration, and Portuguese Foundation for Science and Technology (IF Development Grant to A. J. Salgado; postdoctoral fellowship to N. A. Silva—SFRH/BPD/97701/2013; PhD fellowships of R. C. Assunção-Silva and E. D. Gomes—PDE/BDE/113596/2015 and SFRH/BD/103075/2014, resp.). This article is a result of the project (NORTE-01-0145-FEDER-000013) supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); Cofinanciado pelo ProgramaOperacional Regional do Norte(ON.2 SR&TD Integrated Program—NORTE-07-0124-FEDER-000021), ao abrigo do Quadro de Referência Estratégico Nacional (QREN), através do Fundo Europeude Desenvolvimento Regional (FEDER); Projeto Estratégico—LA 26–2011-2012 and Projeto Estratégico—LA 26–2013-2014 cofinanciado por fundos nacionais, através da Fundação para a Ciência e a Tecnologia (PEst-C/SAU/LA0026/2011; PEst-C/SAU/LA0026/2013), e pelo Fundo Europeu de Desenvolvimento Regional (FEDER), através do COMPETE (FCOMP-01-0124-FEDER-022724; FCOMP-01-0124-FEDER-037298). The authors would like to thank Professor Jeffrey Gimble at the Tulane University Center for Stem Cell Research and Regenerative Medicine and LaCell LLC (New Orleans, Louisiana, USA) for kindly providing the ASCs used in this study.info:eu-repo/semantics/publishedVersio

    Structure, electronic properties, morphology evolution, and photocatalytic activity in PbMoO4 and Pb12xCaxSrxMoO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions

    Get PDF
    In this work PbMoO4 and Pb12xCaxSrxMoO4 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions have been successfully prepared, for the first time, by a simple co-precipitation method and the as-synthesized samples were subjected to a water-based reflux treatment. Structural characterization of these samples was performed using X-ray diffraction with Rietveld refinement analysis and Raman spectroscopy. Their optical properties were investigated by UV-Vis absorption spectroscopy and PL emissions, and the photocatalytic activity of the as-synthesized samples for the degradation process of Rhodamine B has been demonstrated. The surface structure and morphologies were characterized by field emission scanning electron microscopy. To complement and rationalize the experimental results, the geometry, electronic structures, and morphologies of as-synthesized samples were characterized by first-principles quantum-mechanical calculations at the density functional theory level. By using Wulff construction, based on the values of the surface energies for the (001), (100), (110), (111), (011) and (112) surfaces, a complete map of the available morphologies for PbMoO4 was obtained and a good agreement between the experimental and theoretical predicted morphologies was found. The structural and electronic changes induced by the substitution of Pb by Ca and Sr allow us to find a relationship among morphology, the electron-transfer process at the exposed surfaces, optical properties, and photocatalytic activity. We believe that our results offer new insights regarding the local coordination of superficial Pb/Ca/Sr and Mo cations (i.e., clusters) on each exposed surface of the corresponding morphology, which dictate the photocatalytic activities of the as-synthesized samples, a field that has so far remained unexplored. The present study, which combines multiple experimental methods and first-principles calculations, provides a deep understanding of the local structures, bonding, morphologies, band gaps, and electronic and optical properties, and opens the door to exploit the electrical, optical and photocatalytic activity of this very promising family of materials

    Evaluation of air cleaning using functionalized asphalt mixture sprayed with TiO 2 nanoparticles

    Get PDF
    [Excerto] Photocatalytic asphalt mixtures have gained attention as a possible alternative to mitigate the air pollution in urban areas. The asphalt surface when functionalized with nano-TiO2 can reduce nitrogen oxides (NOx), a harmful pollutant emitted by vehicles that contributes to problems such as acid rain and public health concernsCT/MCTES sponsored this research by the projects NanoAir PTDC/FISMAC/6606/2020, MicroCoolPav EXPL/EQU-EQU/1110/2021 and UIDB/04650/2020, under the R&D from ISISE (UIDB/04029/2020) and the ARISE (LA/P/0112/2020). Also, the second and third authors would like to acknowledge the FCT for funding PRT/BD/154269/2022, 2022.00763.CEECIND, respectively

    Inheritance of DNA Transferred from American Trypanosomes to Human Hosts

    Get PDF
    Interspecies DNA transfer is a major biological process leading to the accumulation of mutations inherited by sexual reproduction among eukaryotes. Lateral DNA transfer events and their inheritance has been challenging to document. In this study we modified a thermal asymmetric interlaced PCR by using additional targeted primers, along with Southern blots, fluorescence techniques, and bioinformatics, to identify lateral DNA transfer events from parasite to host. Instances of naturally occurring human infections by Trypanosoma cruzi are documented, where mitochondrial minicircles integrated mainly into retrotransposable LINE-1 of various chromosomes. The founders of five families show minicircle integrations that were transferred vertically to their progeny. Microhomology end-joining of 6 to 22 AC-rich nucleotide repeats in the minicircles and host DNA mediates foreign DNA integration. Heterogeneous minicircle sequences were distributed randomly among families, with diversity increasing due to subsequent rearrangement of inserted fragments. Mosaic recombination and hitchhiking on retrotransposition events to different loci were more prevalent in germ line as compared to somatic cells. Potential new genes, pseudogenes, and knockouts were identified. A pathway of minicircle integration and maintenance in the host genome is suggested. Thus, infection by T. cruzi has the unexpected consequence of increasing human genetic diversity, and Chagas disease may be a fortuitous share of negative selection. This demonstration of contemporary transfer of eukaryotic DNA to the human genome and its subsequent inheritance by descendants introduces a significant change in the scientific concept of evolutionary biology and medicine
    corecore