536 research outputs found

    Performance of Close Anode Cathodic Protection System Applied to a Plane Metallic Grid

    Full text link
    In CP technique the negative shift in cathode potential determines the degree of protection against corrosion. This shift occurs by two mechanisms: the first is depression of cathode potential relative to electrolyte (Remote Anode Systems). The second is elevation of electrolyte potential in the vicinity of cathode relative to electrolyte (Close Anode Systems). These systems are considerably sensitive to anode position because of sharp changes in electrolyte potential with variation of anode location (proximity effect). Our work is to investigate the performance of CP system under conditions of variable anode position, applied to mild steel grid simulating steel reinforced concrete

    Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins

    Get PDF
    Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins’ structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Institute of Solid State Physics, University of Latvia as the Center of Excellence acknowledges funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Forecasting the Climate Change through the Distributions of Solar Radiation and Maximum Temperature

    Get PDF
    The climate change crisis is negatively affecting the world and is the focus of many researchers attention for its life-threatening economic and climate impact on Earth. Therefore, this study aims to estimate the joint distribution function (EFXY) of both daily solar radiation (S) and daily maximum temperature (T) along with the Markov property. In this study, three-parameter distributions have been utilized with S and T, which are generalized extreme value (GEV) and Weibull (W-3P), respectively. Each of these parameters and the joint distribution function ((, )) have been estimated. Four real data of S and T in Queensland, Australia during two consecutive years are applied. The method of maximum likelihood estimation (MLE) is applied on the proposed distributions of S and T to estimate their parameters, which was validated using Goodness-of-Fit tests. In addition, the logarithmic (LFXY) model and the multi-regression model (MFXY) for (, ) are obtained. The results have been compared and the EFXY and LFXY are found to be non-equivalently, while the EFXY and MFXY are equivalent and homogeneous, confirming the validity of the joint distribution function estimate with the least error. Thus, the climate change probabilities are more accurately predictable by knowing both X and Y or by knowing both () and () with minimal error

    Seasonal Abundance and the Efficiency of Yeast Liquid Culture (Candida tropicalis) as Bait for Capturing the Oriental Wasps (Vespa orientalis L.) Under Egyptian Environment

    Get PDF
    Abstract: Seasonal abundance and the efficiency of liquid culture of yeast (Candida tropicalis) as bait to capture the oriental wasps (Vespa orientalis L.), were studied at Dirut location, Assiut governorate during 2003 seasons. The oriental wasps started to appear in the first week of April and gradually decreased to the minimum levels during June (late spring) and July (earlier summer). Then, the activity of wasps increased gradually from the second week of August to the fourth week of September. Total numbers of wasps reached the highest values in October followed by September and November and then the number of oriental wasps decreased until disappeared at the fourth week of December. The modified traps recommended by Ministry of Agriculture were baited with 100% of 1.26×10 5 freshly prepared yeast liquid culture (Candida tropicalis) captured the highest mean numbers of oriental wasps after 24 hr. and 7 days during the active period of wasps (September, October and November). Using liquid yeast culture at 25% concentration recorded the lowest mean numbers of wasps captured in the traps

    Design and synthesis of (2-oxo-1,2-dihydroquinolin-4-yl)-1,2,3-triazole derivatives via click reaction: Potential apoptotic antiproliferative agents

    Get PDF
    A mild and versatile method based on Cu-catalyzed [2+3] cycloaddition (Huisgen-Meldal-Sharpless reaction) was developed to tether 3,3’-((4-(prop-2-yn-1-yloxy)phenyl)methylene)bis(4-hydroxyquinolin-2(1H)-ones) with 4-azido-2-quinolones in good yields. This methodology allowed attaching three quinolone molecules via a triazole linker with the proposed mechanism. The products are interesting precursors for their anti-proliferative activity. Compound 8g was the most active one, achieving IC50_{50} = 1.2 ± 0.2 ”M and 1.4 ± 0.2 ”M against MCF-7 and Panc-1 cell lines, respectively. Moreover, cell cycle analysis of cells MCF-7 treated with 8g showed cell cycle arrest at the G2/M phase (supported by Caspase-3,8,9, Cytochrome C, BAX, and Bcl-2 studies). Additionally, significant pro-apoptotic activity is indicated by annexin V-FITC staining

    Oxidative status and the response to pegylated-interferon alpha2A plus ribavirin in chronic genotype 4 HCV hepatitis

    Get PDF
    Oxidative stress may play a pathogenic role in chronic hepatitis C (CHC). The present study examined the oxidative status in plasma of patients with CHC who received pegylated interferon and ribavirin therapy. The following groups were included: (1) sustained virological response (28 patients), (2) null response (26 patients), (3) breakthrough (24 patients), (4) relapse (24 patients), (5) spontaneous cure (23 patients) and (6) twenty five normal subjects as a control group. Markers of oxidative stress including plasma malondialdehyde, nitric oxide, reduced glutathione, total antioxidant capacity and uric acid as well as serum ALT, AST, alkaline phosphatase, total bilirubin, albumin, prothrombin time were studied. The study indicated significant decline in reduced glutathione and total antioxidant capacity and markedly elevated levels of malondialdehyde and nitric oxide in all groups compared with the controls. Null response group had the highest levels of malondialdehyde and nitric oxide. Nitric oxide was significantly higher in those with null response compared with all other groups and with control subjects. Uric acid was significantly higher in spontaneous cure group compared with all other groups and with the controls. We concluded that CHC patients had increased oxidative stress. The oxidative status in plasma of these patients was not changed by antiviral therapy. The study also showed an important contribution of nitric oxide in null response patients. High serum uric acid did not interfere with the response and/or did not predict the response to antiviral therapy

    CdSe Quantum Dots for Solar Cell Devices

    Get PDF
    CdSe quantum dots have been prepared with different sizes and exploited as inorganic dye to sensitize a wide bandgap TiO2 thin films for QDs solar cells. The synthesis is based on the pyrolysis of organometallic reagents by injection into a hot coordinating solvent. This provides temporally discrete nucleation and permits controlled growth of macroscopic quantities of nanocrystallites. XRD, HRTEM, UV-visible, and PL were used to characterize the synthesized quantum dots. The results showed CdSe quantum dots with sizes ranging from 3 nm to 6 nm which enabled the control of the optical properties and consequently the solar cell performance. Solar cell of 0.08% performance under solar irradiation with a light intensity of 100 mW/cm2 has been obtained. CdSe/TiO2 solar cells without and with using mercaptopropionic acid (MPA) as a linker between CdSe and TiO2 particles despite a Voc of 428 mV, Jsc of 0.184 mAcm-2, FF of 0.57, and η of 0.05% but with linker despite a Voc of 543 mV, Jsc of 0.318 mAcm-2 , FF of 0.48, and η of 0.08%, respectively

    Improving yield and irrigation water productivity of green beans under water stress with agricultural solid waste-based material of compacted rice straw as a sustainable organic soil mulch

    Get PDF
    This research aimed at water saving in irrigation by applying deficit irrigation using two strategies, standard drip and partial root drying (PRD), while applying organic and plastic mulch over two growing seasons of green beans. A field experiment was conducted in 2022 and 2023, using four irrigation treatments supplying 100% of the irrigation requirement (IRg), 75% IRg, 50% IRg, and 50% IRg—PRD, and four soil mulching treatments: uncovered soil (UC), plastic mulch (PM), rice straw mulch (RSM), and compacted rice straw mulch (CRSM). The combined effect of deficit irrigation strategies and soil mulching showed that the maximum irrigation water productivity (IWP) of 5.56 kg m−3 was achieved under 50% IRg—PRD & CRSM for both growing seasons, followed by 50% IRg—PRD & RSM and 50% IRg—PRD & PM, with 5.19 and 4.96 kg m−3, respectively. The highest yield of 8936 kg ha−1 was achieved with 50% IRg—PRD & CRSM, followed by 8914 kg ha−1 and 8898 kg ha−1 with 100% IRg & CRSM and 75% IRg & CRSM, respectively. The lowest yield of 6009 kg ha−1 was obtained with 50% IRg & UC. The highest soil moisture content was observed under 100% IRg & CRSM. The application of organic mulches was found to be particularly effective in conserving soil moisture due to enhanced infiltration, improved retention capacity, and suppression of weed growth, ultimately fostering optimal crop development and higher yield. The results of soil temperature variations beneath soil mulches showed that CRSM is effective in alleviating plant water stress, lowering the temperature below the cover and reducing water loss through evaporation from the soil surface. The combination of 50% IRg—PRD & CRSM produced plants with enhanced plant height, fresh and dry weight, leaf area, pod length, and green bean weight, as well as the highest vegetative growth indices. Generally, the organic mulching increased soil temperature, soil moisture, IWP, and green bean production

    Characterization and genomic analysis of the lytic bacteriophage vB_EclM_HK6 as a potential approach to biocontrol the spread of Enterobacter cloacae contaminating food

    Get PDF
    Background: Increased prevalence of Enterobacter cloacae within food products underscores food as an underexplored reservoir for antibiotic resistance, thus requiring particular intervention. Bacteriophages have been explored as a promising approach for controlling bacterial growth in different matrices. Moreover, their specific interaction and self-replication, put them apart from traditional methods for controlling bacteria in different matrices. Methods: Sixteen Enterobacter cloacae strains were recovered from raw chicken. These strains were used to isolate bacteriophages using enrichment protocol. The broad-spectrum bacteriophage was evaluated in terms of thermal, pH, shearing stress and storge. Moreover, its infection kinetics, in vitro antibacterial activity, cytotoxicity were also assessed. Genomic sequencing was performed to exclude any potential virulence or resistance genes. Finally, the capability of the isolated phages to control bacterial growth in different chicken samples was assessed alone and in combination with sodium nitrite. Results: The lytic bacteriophage vB_EclM_HK6 was isolated and showed the broadest spectrum being able to infect 8/16 E. cloacae strains with a lytic activity against its host strain, E. cloacae EC21, as low as MOI of 10–6. The phage displays a latent period of 10 min and burst size of 115 ± 44 and resistance frequency of 5.7 × 10–4 ± 3.0 × 10–4. Stability assessment revealed a thermal tolerance up to 60 ˚C, wide range pH stability (3–10) and the ability to withstand shearing stress up to 250 rpm. HK6 shows no cytotoxicity against oral epithelial cells up to 1012 PFU/ml. Genomic analysis revealed a Strabovirus with total size of 177,845 bp that is free from known resistance and virulence genes. Finally, HK6 pretreatment of raw chicken, chicken nuggets and ready-made cheese salad shows a reduced bacterial count up to 4.6, 2.96 and 2.81 log-units, respectively. Moreover, combing HK6 with sodium nitrite further improved the antibacterial activity in both raw chicken and chicken nuggets without significant enhancement in case of cheese salad. Conclusion: Enterobacter bacteriophage vB_EclM_HK6 presents a safe and effective approach for controlling E. cloacae contaminating stored chicken food samples. Moreover, they could be combined with a reduced concentrations of sodium nitrite to improve the killing capacity
    • 

    corecore