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Abstract: The climate change crisis is negatively affecting the world and is the focus of many researchers' attention for its 
life-threatening economic and climate impact on Earth. Therefore, this study aims to estimate the joint distribution function 
(EFXY) of both daily solar radiation (S) and daily maximum temperature (T) along with the Markov property. In this study, 
three-parameter distributions have been utilized with S and T, which are generalized extreme value (GEV) and Weibull 
(W-3P), respectively. Each of these parameters and the joint distribution function (𝐹(𝑋, 𝑌)) have been estimated. Four real 
data of S and T in Queensland, Australia during two consecutive years are applied. The method of maximum likelihood 
estimation (MLE) is applied on the proposed distributions of S and T to estimate their parameters, which was validated 
using Goodness-of-Fit tests. In addition, the logarithmic (LFXY) model and the multi-regression model (MFXY) for 
𝐹(𝑋, 𝑌)	are obtained. The results have been compared and the EFXY and LFXY are found to be non-equivalently, while the 
EFXY and MFXY are equivalent and homogeneous, confirming the validity of the joint distribution function estimate with 
the least error. Thus, the climate change probabilities are more accurately predictable by knowing both X and Y or by 
knowing both	𝐹(𝑋) and 𝐹(𝑌)	with minimal error. 
Keywords: Generalized extreme value distribution, Maximum likelihood estimation, Multi-regression, Markov property, 
Weibull-3P distribution. 

. 
1 Introduction 

Under the current conditions, knowledge of climate sciences has become a common practice since the world has been 
subject to climate changes that negatively affect the world and threaten life on earth. What confirms this is the greatest 
novelty on the planet in the last hundred years. This is the fossil fuel that loaded the atmosphere with huge amounts of 
emissions and pollutants [1]. 

Climate change has significant effects such as melting ice, extinction of many species of animals, and diseases. Therefore, 
alternative energy to fossil fuels should be used, and the course and term of the industrial revolution should be modified to 
sustainable development to preserve the environment and to overcome the climate change crisis [2].  

Solar radiation, or irradiance, on the surface of the Earth has emerged in different fields of study due to its importance in 
understanding climate change. In the previous body of research, several authors acting of the solar radiation data by 
medium and long-term time series. Currently, the main objective is to construct statistical methods that are more accessible 
and accurate for predicting the global climate changes [3]. 

In statistical literature, some models of solar radiation models were developed by the analytical measuring data. This is 
done through employing some criteria in order to choose the probabilistic distributions shown in two models of artificial 
solar radiation generation in [4].   

It should be added that the time series of solar radiation were discussed. They can be taken from data measured by 
determining periods of representative measurement data and calculating an average radiation year. More recently, configure 
Markov transition matrix model using the neural networks was studied by [5]. 

 In [6, 7], authors explained climate change's influence on industry and used the artificial neural network for prediction of 
global incident solar radiation through the European Centre for Medium Range Weather Forecasting.  

Further, several statistical models such as temperature model (TM), time series and Fourier series (TSFS) models were 
presented. Also, root mean square error (RMSE), mean absolute error (MAE) and mean bias error (MBE) were calculated. 
The random fluctuation model of the solar radiation time series by using beta distribution was proposed in [8, 9]. 
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On the other hand, threshold autoregressive (TAR) time series model was used on the logarithm of clear-sky index series to 
forecast multi-day solar radiation data and described its statistical properties in [10].  

Further, in [11, 12], the probability of the daily average solar energy was computed using a multiple linear regression 
model. Moreover, numerous researches have centered on statistical approaches for improving solar energy forecasting 
which affected by the interest time scale whither by hour, day, or month [13, 14, 15, 16].  

By using preprocessing and an array of synthetic intelligence approaches, a multiple nonlinear regression model could 
reliably forecast exceeding the daily maximum ozone threshold, as suggested by [17].  

Predicting renewable energy consumption to eliminate the energy crisis and reduce emissions worldwide was discussed by 
[18, 19, 20]. Authors in [21] introduced an adaptive neural fuzzy inference system to predict the ground inflow using a 
sample of 110 data sets containing the most important characteristics influence on the ground inflow rate.  

Multiple linear regression and artificial neural networks based on main components could forecast ozone concentrations. 
Additionally, [22, 23, 24] provided estimates of the global solar radiation over different areas. 

Markov models were adopted in multiple studies to model solar radiation, where it has evidenced to give effective 
modeling to obtain accurately forecast. These models are blended with wavelet coefficients, the generalized Fuzzy model, 
and Markov-chain mixture distribution model as illustrated by [25, 26]. 

This paper aims to estimate the joint distribution function (EFXY) of both daily solar radiation (S) and daily maximum 
temperatures (T) combined with Markov property. The parameters of both distributions GEV and W-3P are obtained by 
applying the method of maximum likelihood estimation (MLE). In addition, estimate the joint distribution function 
(𝐹(𝑋, 𝑌)) for both S and T. Four real data analyses of S and T in Queensland, Australia during 2015-2016 are applied to 
assess the efficiency of the proposed distributions. Nonetheless, logarithmic (LFXY) model and the multi-regression (MFXY) 
model are constructed for 𝐹(𝑋, 𝑌). Several metrics are employed to evaluate the effectiveness of the suggested distributions 
and compare the models EFXY, LFXY, and MFXY such as Kolmogorov-Smirnov (K-S) test, P-value, R squared, Pearson 
correlation, Anderson Darling (A*), Chi-Squared, Mann-Whitney test, and homogeneity test. 

The motivation behind this study is to predict the impact of climate change on life on Earth by estimating the co-
distribution function of solar radiation and its corresponding temperature extremes. The Markov property of the joint 
distribution function was used to calculate the different probability values and to study the independence of the two 
variables solar radiation and extreme temperature. In addition, a method was proposed in this study to reduce the 
distributions of three parameters to the distributions of two parameters and compare them with the aim of obtaining the 
probabilities of the common distribution function at the maximum values of solar radiation and temperature in order to 
simplify the formulas of the probability distributions functions by converting them into regression models and thus the 
possibility of creating an algorithm for it and applying it in estimation of solar radiation and maximum temperature. 

In addition, this study aims to find the probability of high maximum temperature with low solar radiation. This is an 
indication of an imbalance in the climate. Whereby there are reasons that led to this, such as environmental pollution 
arising from factory fumes, forest fires, and green spaces. Also, petroleum products and exhausts of various means of 
transportation are among the causes that negatively affect climate change.  

Although the three-parameter distributions are reduced to two in the form of the logarithmic regression model, we find that 
there are some drawbacks from the result of this conversion. This is due to the fact that the logarithmic model does not 
include the range of small values for each of the solar radiation and extreme temperatures. The actual formula of the co-
distribution function estimated by the distribution functions for both solar radiation and temperature extremes cover all the 
range of solar radiation values and temperature extremes. Such a matter is a great advantage. Although the actual formula 
covers the range of values of the data set for the two variables, we will need to use estimation methods for the three 
parameters of both distribution functions. That requires more time and effort, or the use of ready-made programs to 
estimate the parameters. If it is required to calculate the probabilities of extreme temperature values with medium or low 
values of solar radiation, the logarithmic regression model is easier to evaluate this probability. 

This paper contains the following sections: 

• Concepts of solar radiation and maximum temperature. 

• Source of the datasets. 

• Definitions of Generalized Extreme Value (GEV) and Weibull-three parameters (W-3P). 

• Software. 
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• Theorems 2.1, 2.2 and 3.1. 

• Remarks 2.1, 2.2, 2.3 and 3.1. 

• Converting Three-Parameters 𝐹(𝑋, 𝑌)	into Two-Parameters Logarithmic Regression Model (LFXY). 

• Multiple Nonlinear Regression Model of	𝐹(𝑋, 𝑌). 

• Maximum Likelihood Estimation (MLE). 

• Results and Discussion. 

• Conclusions. 

• Data Availability. 

• Conflict of Interest. 

• Funding Statement. 

• Acknowledgments. 

• Supplementary Materials. 

• References. 

 

2 Solar Radiation and Maximum Temperature 

This section provided the following: 

• Basic concepts of solar radiation and extreme temperature. 

• Definitions of some probability distribution functions used in this study. 

• Definition of Markov property. 

• Theorems and remarks on the joint distribution function of solar radiation and temperature extremes. 

Suppose that X and Y are distinct scale continuous random variables of the phenomena of daily solar radiation (S) and 
daily maximum temperature (T) which they have generalized extreme value (GEV) distribution and three-parameter 
Weibull (W-3P) distribution, respectively, and satisfy Markov property.  

Definition 2.1 Solar radiation is a general term which refers to radiant energy produced by the sun. It can be used in 
numerous fields such as generating heat and electricity. It is measured by mega joules per square meter (MJ/m2) [27].  

Definition 2.2 Maximum temperature refers to the highest degree in a certain time and a certain place. This temperature 
has no limit in its degree. This means that it can reach to degrees that are cannot be measured. It is worth mentioning that 
the measure unit is degrees Celsius [28]. 

Dataset: The datasets in Figure 1 were produced by the Bureau of Meteorology in Australian government during 2015-
2016 in Queensland, Australia. 
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Fig. 1: Plots (a-d) illustrates datasets of S and T during 2015-2016 in Queensland, Australia. 

Definition 2.3 Suppose that X is a continuous random variable representing the daily solar radiation (S) and it has (GEV) 
distribution, which includes three types of distributions: type I-Gumbel (	𝛼* = 0), type II-Fréchet (	𝛼* > 0), and the type 
III-Weibull (	𝛼* < 0). The (cdf) 𝐹/01(𝑥;	𝛼*, 𝜃*, 𝜆*) is defined as follows:  

𝐹/01(𝑥;	𝛼*, 𝜃*, 𝜆*) =

⎩
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	                                                     (1) 

Such that	𝛼* ∈ 𝑅, 	𝜃* > 0 and 𝜆* ∈ 𝑅 are the shape, scale and location parameters, respectively [29]. 

Definition 2.4 Suppose that Y is a continuous random variable representing the daily maximum temperature (T) and it has 
(W-3P) distribution. Then the (cdf) 𝐹U(𝑦; 𝛽X, 𝜆X, 𝛼X) is defined as follows: 

𝐹U(𝑦; 𝛽X, 𝜆X, 𝛼X) = Y		1 − 𝑒
;[\E?]Q]

^
_]

							𝑦 > 	𝛼X,
		0																																𝑦 ≤ 	𝛼X.

                                                                                                                (2) 

Where	𝛽X ≥ 0, 𝜆X ≥ 0	and 𝛼X ≥ 0 are the shape, scale and location parameters, respectively [30]. 

The following Theorem 2.1 explores the relationship between the joint distribution function 𝐹(𝑋, 𝑌) and the functions 
𝐹(𝑋)	and 𝐹(𝑌)	which is determined by the constant C which is computed from data sets for both solar radiation and 
maximum temperatures. 

The study of the correlation relationship is based on the well-known rule that says that for any two events A and B they are 
independent if the value of the constant C = 1 in the relation	𝑃(𝐴 ∩ 𝐵) = 𝐶	𝑃(𝐴)	𝑃(𝐵). 

Certainly, if the value of the constant is C = 0 or C ≈ 0, then the correlation is non-existent, meaning that the two events A 
and B are not independent or that the phenomena of solar radiation and extreme temperatures are not independent. 
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This is what will be discovered in the application used in this study from the data set given about solar radiation and 
extreme temperatures.  

In the case if the value of the constant is C ≈ 0, then we will need another formula for the common distribution function 
using the OR relationship, as it is more comprehensive than the AND relationship. 

The rule in probabilities about the OR relationship between any two events is known as 𝑃(𝐴 ∪ 𝐵) = 	𝛼	𝑃(𝐴) + 𝛽	𝑃(𝐵) −
𝐶	𝑃(𝐴 ∩ 𝐵), where each of α, β and C are real constants and the formulas for these constants have been determined In 
Theorem 2.2 to calculate their values to estimate the joint distribution function 𝐹(𝑋, 𝑌). 

Theorem 2.1 If  X and Y are continuous random variables representing two different phenomena S and T, which have 
GEV distribution and W-3P distribution, respectively, and satisfy the Markov property. Then, the joint distribution function 
𝐹(𝑋, 𝑌) is defined as  

𝐹(𝑋, 𝑌) = 𝐹(𝑋 < 𝑥	𝑎𝑛𝑑	𝑌 < 𝑦) = 𝐶	𝐹(𝑥)𝐹(𝑦),                                                                                                                   (3) 

where 

	𝐶 = =
kl
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;)s + 	𝑆k;z;{	𝑇k;};~s,                                (4) 

such that 𝑥> = 𝑆> = 𝜂, 𝑥; = 𝑆; = 𝛾, 𝑥� = 𝑆k;z;{, 	𝑦> = 𝑇> = 𝜏, 𝑦; = 𝑇; = 𝛿, 𝑦� = 𝑇k;};~, 𝜇 = 	𝑇k;};~	𝐹O𝐷*R, 𝛩 =
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;), 𝜌 = 𝑆k;z;{	𝐹O𝐷XR, where 𝐹O𝐷*R and 𝐹O𝐷XR are cdfs of GEV 

and W-3P distributions, respectively. 

Proof: Let the probabilities	𝑝q�@(𝑥
;),	𝑝q�](𝑦

;),	𝑝q�@(𝑥
>),	𝑝q�](𝑦
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�)	are defined as follows: 

𝑝q�@(𝑥
;) is the probability that 𝑥 is decreased by 𝐷�*,	 

𝑝q�](𝑦
;)	is the probability that 𝑦 is decreased by 𝐷�X, 

𝑝q�@(𝑥
>)	is the probability that 𝑥 is increased by 𝐷�*, 

𝑝q�](𝑦
>)	is the probability that 𝑦 is increased by 𝐷�X, 

𝑝q�@(𝑥
�)	is the probability that reveals no change in the value of 𝑥, 

𝑝q�](𝑦
�)	is the probability that shows no change in the value of 𝑦. 

Here, 𝐷�* and 𝐷�X are the average deviation of X and Y respectively. 

     On the other hand, the process is said to have the Markov property if 

𝑝(𝑋(𝑡 + 𝑠) = 𝑗|𝑋(𝑡) = 𝑖, 𝑋(𝑢) = 𝑥(𝑢), 0 ≤ 𝑢 < 𝑠	) = 𝑝(𝑋(𝑡 + 𝑠) = 𝑗|𝑋(𝑠) = 𝑖	).                                                           (5) 

For all possible	𝑥(𝑢), 0 ≤ 𝑢 < 𝑠. 

There are five different cases of the daily solar radiation X and the daily maximum temperature Y: 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝(𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q@O𝑥
∓R ∙ 𝑝q]O𝑦

∓R.                                                                      (6) 

𝑝O𝐴�R = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝(𝑌 < 𝑦 ∓ 𝐷�X) ∙ 𝑝q@O𝑥
∓R ∙ 𝑝q](𝑦

±).                                                                      (7) 

𝑝(𝐴�) = 	𝑝(𝑋 < 𝑥|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝(𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q@(𝑥
�) ∙ 𝑝q]O𝑦

∓R.                                                                              (8) 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦) ∙ 𝑝(𝑌 < 𝑦) ∙ 𝑝q@O𝑥
∓R ∙ 𝑝q](𝑦

�).                                                                                          (9) 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥|𝑌 < 𝑦) ∙ 𝑝(𝑌 < 𝑦) ∙ 𝑝q@(𝑥
�) ∙ 𝑝q](𝑦

�).                                                                                                (10) 

Where	𝐹(𝑥 ± 𝐷�*) = 𝐹(𝑥)	𝐹(𝐷�*)	𝑝q@(𝑥
±), 𝐹(𝑦 ± 𝐷�X) = 𝐹(𝑦)	𝐹(𝐷�X)	𝑝q](𝑦

±).	 

The probabilities equations from (6) to (10) represent the three different states of increase, decrease, and non-change of the 
values of solar radiation and maximum temperatures. Whereby the joint distribution function 𝐹(𝑋, 𝑌) is in the case of the 
correlation of		𝐹(𝑋), 𝐹(𝑌)	to AND. The values of solar radiation x and maximum temperatures y has three cases: (i) That 
they were increased in the current year by 𝐷�* and 𝐷�X, then they decreased by the same amounts in next year, thus they 
returned to their actual values x and y. (ii) Likewise, if they were decreased in the current year by  𝐷�* and  𝐷�X, then they 
increased in next year by the same amounts and return to the actual values. (ii) Last case that they are not change during 



244                                                                                                        M. El Genidy et al.: Forecasting the Climate Change … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

two consecutive years. In order to prevent writing many equations, the positive and negative signs were merged together 
into one equation. 

Then,  
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Where the equations (11) to (19) represent the substitution of the cumulative distribution functions of GEV and W-3P in 
the equations (6) to (10). 

Substituting from Eqs. (11-19) in Eq. (3), such that 

𝐹(𝑥, 𝑦) = 𝐹(𝑋 < 𝑥	𝑎𝑛𝑑	𝑌 < 𝑦) = 𝐶	𝐹(𝑥)𝐹(𝑦) =¡𝑝(𝐴¢)
 

¢£=

 

=
1
𝑛� [m𝛾𝐹

(𝑥 + 𝐷�*) + 𝑆k;z;{	𝐹(𝑥) + 𝜂𝐹(𝑥 − 𝐷�*)s O𝛿𝐹(𝑦 + 𝐷�X) + 	𝑇k;};~𝐹(𝑦) + 𝜏𝐹(𝑦 − 𝐷�X)R^ 

= <
1
𝑛� [m𝛾𝐹O𝐷*R	𝑝q@

(𝑥>) + 𝑆k;z;{	 + 𝜂𝐹O𝐷*R	𝑝q@(𝑥
;)s m𝛿𝐹O𝐷XR	𝑝q](𝑦

>) + 	𝑇k;};~ + 𝜏𝐹O𝐷XR	𝑝q](𝑦
;)s^D𝐹(𝑥)𝐹(𝑦). 

Then, we obtain the formula of the constant C in Eq. (4). 

Remark 2.1 If 𝐶 → 1, then the joint distribution function		𝐹(𝑋, 𝑌)	has a complete positive correlation with the 
multiplying	𝐹(𝑥)	in	𝐹(𝑦)	which means that X and Y are independent variables. 

Remark 2.2 If 	𝐶 → 0, then the joint distribution function 𝐹(𝑋, 𝑌)	has almost no correlation with the multiplying	𝐹(𝑥) in 
𝐹(𝑦)	which means that X and Y are not independent variables. For this reason, the following theorem is considered. 
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Theorem 2.2 If  X and Y are continuous random variables representing two different phenomena S and T, which have 
GEV distribution and W-3P distribution, respectively, and satisfy Markov property. Then, the joint distribution function 
𝐹(𝑋 + 𝑌) (the estimation of the theoretical model	(EFxy)) is depending on Theorem 2.1 and it is defined as  

EFxy = 𝐹(𝑋 + 𝑌) = 𝐹(𝑋 < 𝑥	𝑜𝑟	𝑌 < 𝑦) = 𝐴/01	𝐹(𝑥) + 𝐵UN¢«¬𝐹(𝑦) − 𝐶	𝐹(𝑥)𝐹(𝑦).                                                  (20) 

Where  

𝐴/01 =
3
𝑛 O	𝛾	𝐹O𝐷*R	𝑝q@

(𝑥>) + 𝜂	𝐹O𝐷*R	𝑝q@(𝑥
;) +	𝑆k;z;{R. 

The constant C will be evaluate from Theorem 2.1 and 𝐵UN¢«¬	 from Eq. (20), where	𝐹 °B.(𝑋 + 𝑌) = 1,            
𝐹(𝑥¯°B.) = 1	and		𝐹(𝑦 °B.) = 1. Such that		𝑥> = 𝑆> = 𝜂, 𝑥; = 𝑆; = 𝛾, 𝑥� = 𝑆k;z;{	, 𝑦> = 𝑇> = 𝜏, 𝑦; = 𝑇; = 𝛿, 
𝑦� = 	𝑇k;};~	. 𝐹O𝐷*R and 𝐹O𝐷XR are the cdfs of GEV and W-3P distributions, respectively. 

Proof: There are five different cases of the daily solar radiation X and the daily maximum temperature Y: 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q@O𝑥
∓R + 𝑝(𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q]O𝑦

∓R.                                                                  (21) 

𝑝O𝐴�R = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q@O𝑥
∓R + 𝑝(𝑌 < 𝑦 ∓ 𝐷�X) ∙ 𝑝q](𝑦

±).                                                                  (22) 

𝑝(𝐴�) = 	𝑝(𝑋 < 𝑥|𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q@(𝑥
�) + 𝑝(𝑌 < 𝑦 ± 𝐷�X) ∙ 𝑝q]O𝑦

∓R.                                                                          (23) 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥 ± 𝐷�*|𝑌 < 𝑦) ∙ 𝑝q@O𝑥
∓R + 𝑝(𝑌 < 𝑦) ∙ 𝑝q](𝑦

�).                                                                                     (24) 

𝑝(𝐴�) = 𝑝(𝑋 < 𝑥|𝑌 < 𝑦) ∙ 𝑝q@(𝑥
�) + 𝑝(𝑌 < 𝑦) ∙ 𝑝q](𝑦

�).                                                                                              (25)  

Where	𝐹(𝑥 ± 𝐷�*) = 𝐹(𝑥)	𝐹(𝐷�*)	𝑝q@(𝑥
±), 	𝐹(𝑦 ± 𝐷�X) = 𝐹(𝑦)	𝐹(𝐷�X)	𝑝q](𝑦

±).	 

The probabilities equations from (21) to (25) represent the three different states of increase, decrease, and non-change of 
the values of solar radiation and maximum temperatures. Whereby the joint distribution function 𝐹(𝑋, 𝑌) is in the case of 
the correlation of		𝐹(𝑋), 𝐹(𝑌)	to OR. 

Consequently, 

𝑝(𝐴=) =
z
k
𝑒
;<=>?@A@

O(B>q�@);C@RD

EF
?@

+ }
k
�1 − 𝑒;[

O\���]RE?]
Q]

^
_]

�.                                                                                             (26) 

𝑝(𝐴�) =
{
k
𝑒
;<=>?@A@

O(B;q�@);C@RD

EF
?@

+ ~
k
�1 − 𝑒;[

O\E��]RE?]
Q]

^
_]

�.                                                                                             (27) 

𝑝(𝐴�) = 	
z
k
𝑒
;<=>?@A@

O(B>q�@);C@RD

EF
?@

+ ~
k
�1 − 𝑒;[

O\E��]RE?]
Q]

^
_]

�.                                                                                            (28) 

𝑝(𝐴�) =
{
k
𝑒
;<=>?@A@

O(B;q�@);C@RD

EF
?@

+ }
k
�1 − 𝑒;[

O\���]RE?]
Q]

^
_]

�.                                                                                             (29) 

𝑝(𝐴�) =
*�E�E�

k
𝑒
;<=>?@A@

(B;C@)D

EF
?@

+ }	
k
�1 − 𝑒;[

O\���]RE?]
Q]

^
_]

�.                                                                                            (30) 

𝑝(𝐴�) =
*�E�E�

k
𝑒
;<=>?@A@

(B;C@)D

EF
?@

+ ~	
k
�1 − 𝑒;[

O\E��]RE?]
Q]

^
_]

�.                                                                                             (31) 

	𝑝(𝐴�) = 	
	z
k
𝑒
;<=>?@A@

O(B>q�@);C@RD

EF
?@

+ X�E�E�
k

�1 − 𝑒;[
\E?]
Q]

^
_]

�.                                                                                          (32) 
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𝑝(𝐴�) =
	{
k
𝑒
;<=>?@A@

O(B;q�@);C@RD

EF
?@

+ X�E�E�
k

�1 − 𝑒;[
\E?]
Q]

^
_]

�.                                                                                            (33) 

𝑝(𝐴 ) =
*�E�E�	

k
𝑒
;<=>?@A@

(B;C@)D

EF
?@

+ X�E�E�
k

�1 − 𝑒;[
\E?]
Q]

^
_]

�.                                                                                            (34) 

Such that the equations (26) to (34) represent the substitution of the cumulative distribution functions of GEV and W-3P in 
the equations (21) to (25).  

Substituting from Eqs. (26-34) in Eq. (20), then 

EFxy = 𝐹(𝑋 + 𝑌) = 𝐹(𝑋 < 𝑥	𝑜𝑟	𝑌 < 𝑦) =¡𝑝(𝐴¢)
 

¢£=

− 𝐶	𝐹(𝑥)𝐹(𝑦) 

								=
3
𝑛 m𝛾	𝐹O𝑥 + 𝐷*R + 𝜂	𝐹O𝑥 − 𝐷*R + 𝑆k;z;{𝐹

(𝑥) + 	𝛿	𝐹O𝑦 + 𝐷XR + 𝜏	𝐹O𝑦 − 𝐷XR + 𝑇k;};~𝐹(𝑦)s − 𝐶	𝐹(𝑥)𝐹(𝑦), 

EFxy =
3
𝑛	mO	𝛾	𝐹O𝐷*R	𝑝q@

(𝑥>) + 𝜂	𝐹O𝐷*R	𝑝q@(𝑥
;) +	𝑆k;z;{R𝐹(𝑥) + 

															O	𝛿	𝐹O𝐷XR	𝑝q](𝑦
>) + 𝜏	𝐹O𝐷XR	𝑝q](𝑦

;) +	𝑇k;};~R𝐹(𝑦)s − 𝐶	𝐹(𝑥)𝐹(𝑦),						 

EFxy = [�
k
O𝛾	𝐹O𝐷*R	𝑝q@(𝑥

>) + 𝜂	𝐹O𝐷*R	𝑝q@(𝑥
;) +	𝑆k;z;{R^ 𝐹(𝑥) 	+ 𝐵UN¢«¬𝐹(𝑦) − 𝐶	𝐹(𝑥)𝐹(𝑦).                           (35) 

From the previous equation, we obtain	𝐴/01.  

Remark 2.3 If		𝐴/01 ≠ 0, 𝐵UN¢«¬ ≠ 0 and	𝐶 ≈ 0, then 𝐹(𝑋 + 𝑌)	has a linear correlation with 𝐹(𝑥) and 𝐹(𝑦). 

The aim of getting the	𝐹(𝑋 + 𝑌)	is to predict probabilities at the different values of both 𝑋, 𝑌 and especially non 
corresponding values. If 𝑋 has a small value and represents solar radiation and 𝑌 has a large value and represents the 
maximum temperature and the probability of both is high, this means that there is a dysfunction or climate change caused 
by the pollution or the ozone layer damaged. 

3 Converting Three-Parameters 𝑭(𝑿, 𝒀)	into Two-Parameters Logarithmic Regression Model 
(LFXY) 

This section introduced: 

• Theorem on the logarithmic regression model of the joint distribution function of solar radiation and maximum 
temperature. 

• Algorithm of solving nested percentile of backward and forward equations to estimate the distribution functions used 
in this study. 

Theorem 3.1 If the logarithmic regression model (LFXY) is defined as: 

𝐹(𝑥) = 𝜑= ln(𝑥) + 𝜑�,                                                                                                                                                          (36) 

𝐹(𝑦) = 𝜔= ln(𝑦) + 𝜔�.                                                                                                                                                         (37)  

Then, 

𝜑= =
·(B¸¹�.);·(B¸ºP.)
»¼(B¸¹�.);»¼(B¸ºP.)

,                                                                                                                                                          (38) 

𝜑� = <m·(B¸¹�.)
»¼(B¸¹�.)

− ·(B¸ºP.)
»¼(B¸ºP.)

s ½ m =
»¼(B¸¹�.)

− =
»¼(B¸ºP.)

sD,                                                                                                          (39) 

𝜔) =
+(,-./.)1+(,-23.)
45(,-./.)145(,-23.)

,                                                                                                                                                     (40) 
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𝜔6 = 78+(,-./.)
45(,-./.)

− +(,-23.)
45(,-23.)

: ; 8 )
45(,-./.)

− )
45(,-23.)

:<.                                                                                                (41) 

Proof: From Eq. (20) in Theorem 2.2 

𝐸𝐹¿À = 𝐹(𝑋 + 𝑌) = 𝐴/01	𝑒
;<=>?@A@

(B;C@)D

EF
?@

+ 𝐵UN¢«¬ �1 − 𝑒
;[\E?]Q]

^
_]

� − 𝐶	𝑒
;<=>?@A@

(B;C@)D

EF
?@

�1 − 𝑒;[
\E?]
Q]

^
_]

�.     (42) 

Then, the logarithmic regression model of 𝐹(𝑋, 𝑌)	is defined as follows: 

𝐿𝐹¿À = 	𝐹Â(𝑋 + 𝑌) = 𝐴/01(𝜑= ln(𝑥) + 𝜑�) + 𝐵ÂUN¢«¬(𝜔= ln(𝑦) + 𝜔�) − 𝐶(𝜑= ln(𝑥) + 𝜑�)(𝜔= ln(𝑦) + 𝜔�).              (43) 

Where 𝐹=(𝑋 + 𝑌) is the estimation of 	𝐹(𝑋 + 𝑌) and 𝐵>𝑊𝑒𝑖𝑏𝑢𝑙𝑙 will be evaluate from Eq. (43) such that		𝐹𝑚𝑎𝑥.(𝑋 + 𝑌) = 1, 
𝐹(𝑥¯°B.) = 1 and		𝐹(𝑦 °B.) = 1. Comparing Eq. (42) and Eq. (43), then 

𝑒
−71+𝛼𝑆𝜃𝑆

(𝑥𝑚𝑖𝑛.−𝜆𝑆)<

−1
𝛼𝑆

= 𝜑1 ln(𝑥𝑚𝑖𝑛.) + 𝜑2,                                                                                                                            (44) 

𝑒
−71+𝛼𝑆𝜃𝑆

(𝑥𝑚𝑎𝑥.−𝜆𝑆)<

−1
𝛼𝑆

= 𝜑1 ln(𝑥𝑚𝑎𝑥.) + 𝜑2,                                                                                                                           (45) 

by subtracting Eqs. (44) and (45), we get Eq. (38). Also, by dividing the Eq. (44) on ln(𝑥𝑚𝑖𝑛.) and dividing the Eq. (45) 
on	ln(𝑥𝑚𝑎𝑥.), we get the following Eqs. (44) and (45), respectively 

+(?-./.)
45(?-./.)

= 𝜑) +
BC

45(?-./.)
,                                                                                                                                                   (46)	

+(?-23.)
45(?-23.)

= 𝜑) +
BC

45(?-23.)
,                                                                                                                                                  (47) 

by subtracting Eqs. (46) and (47), we get Eq. (39). In addition to, comparing transactions of the 𝐵𝑊𝑒𝑖𝑏𝑢𝑙𝑙 we obtain the 
following 

1 − 𝑒1F
\¸¹�.E?]

Q]
G
_]

= 𝜔) ln(𝑦KLM.) + 𝜔6,                                                                                                                          (48) 

1 − 𝑒1F
\¸ºP.E?]

Q]
G
_]

= 𝜔) ln(𝑦KN?.) + 𝜔6,                                                                                                                         (49) 

subtracting Eqs. (48) and (49), we obtain Eq. (40). Also, by dividing the Eq. (48) on lnO𝑦𝑚𝑖𝑛.P and dividing the Eq. (49) 
on	lnO𝑦𝑚𝑎𝑥.P, we get the following Eqs. (50) and (51), respectively 

+(,-./.)
45(,-./.)

= 𝜔) +
QC

45(,-./.)
,                                                                                                                                                   (50) 

+(,-23.)
45(,-23.)

= 𝜔) +
QC

45(,-23.)
,                                                                                                                                                  (51) 

by subtracting Eqs. (50) and (51), we obtain Eq. (41).  



248                                                                                                        M. El Genidy et al.: Forecasting the Climate Change … 
 

 
 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

     On the other hand, Eqs. (36) and (37) can be solved to obtain the solutions of the parameters of distributions using 
Nested Percentiles Algorithm (NPA) [31]. The percentiles equations were applied to obtain the values of		𝑥𝑖. Then 98 
equations in terms of 𝜑1 and 𝜑2 were obtained. Thus, every two equations were solved together for all 𝑖 = 1 to	49 to obtain 
49 estimation values of		𝜑1,	𝜑2, 𝜔1	and  𝜔2.  

Let cdfs at any two points of S dataset 𝑥𝑓𝑖 and 𝑥𝑙𝑖 are: 
 
𝑃𝑓𝑖 = 𝜑

1
lnO𝑥𝑓𝑖P + 𝜑2,	

 
and 
 
𝑃𝑙𝑖 = 𝜑1 ln(𝑥𝑙𝑖) + 𝜑2, 
 
such that 	𝑃𝑙𝑖 = 1 − 𝑃𝑓𝑖, 𝑖 = 1, 2, 3, ⋯ , 𝑁 2⁄ , and N  is an even number. Then, we obtain Eqs. (38) and (39). 
 
     Iterate the above steps for each pair of equations that satisfy	𝑃𝑙𝑖 = 1 − 𝑃𝑓𝑖. Thus,	𝑁 2⁄  different values for each 𝜑1 and 
𝜑2 were obtained. Then, the averages are calculated to get the final value of the two parameters. 
 

𝜑) =
∑ BT.
U/C
.WT
X/6

.                                                                                                                                                                       (52) 

 

𝜑6 =
∑ BC.
U/C
.WT
X/6

.                                                                                                                                                                       (53) 

 
Similarly for T and we obtain 𝜔1	and 𝜔2 in Eqs. (40) and (41).  

𝜔) =
∑ QT.
U/C
.WT
X/6

.                                                                                                                                                                      (54) 

 

𝜔6 =
∑ QC.
U/C
.WT
X/6

.                                                                                                                                                                      (55) 

     Figure 2 shows the method of solving the nested percentiles of backward and forward equations. The Algorithm was 
applied on the datasets of		𝑧 = {𝑥, 𝑦}, such that	𝐹(𝑥) and 𝐹(𝑦) are the cdfs of GEV and W-3P distributions, respectively.  
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Fig. 2: Algorithm of solving nested percentile of backward and forward equations. 

The logarithmic regression equation for 𝐹(𝑧) over ln(𝑧) can be defined on the following formula 

Y
𝐹(𝑧) ln(𝑧) 1

∑ 𝐹(𝑧L)M
L\) ∑ ln(𝑧L)M

L\) 𝑁
∑ ln(𝑧L) 𝐹(𝑧L)M
L\) ∑ (ln(𝑧L))6M

L\) ∑ ln(𝑧L)M
L\)

Y = 0.                                                                                               (56) 

Remark 3.1 The Adjusted R2 for 𝐹(𝑥)	and 𝐹(𝑦)	must be close to 1 such that 

	𝑅N`a.6 = 1 − 8O)1b
CP(M1))

M1c1)
:,                                                                                                                                               (57) 

where n is the size of dataset, k is the number of variables in the model and 𝑅2	is the coefficient of determination: 

𝑅6 = ddb
dde

= ∑ (fg.1fh)C/
.WT

∑ (f.1fh)C/
.WT

, 0 ≤ 𝑅6 ≤ 1.                                                                                                                              (58) 

Such that	𝑍=𝑖 = 𝐹(𝑍) = 𝐴 ln(𝑍) + 𝐵, where 𝐴 and 𝐵 are constants. Also, the Adjusted 𝑅2	will always be less than or equal 
to	𝑅2. 
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4 Multiple Nonlinear Regression Model of 𝑭(𝑿, 𝒀) 

In this section, we introduced the estimation model, multi-regression model and logarithmic model for 𝐹(𝑋, 𝑌). 

To validate the theoretical model estimate in Eq. (20), we utilize the multi-regression model (𝑀𝐹𝑥𝑦)	by knowing both 𝐹(𝑋) 
and 𝐹(𝑌) and comparing results with the	𝐸𝐹BÓ. The estimated theoretical model can thus be obtained from Eq. (20) in 
Theorem 2.2 as follows:  

𝐸𝐹𝑥𝑦 = 𝐹(𝑋, 𝑌) = 𝐴j𝑒
−71+𝛼𝑆𝜃𝑆

(𝑥−𝜆𝑆)<

−1
𝛼𝑆

k + 𝐵71 − 𝑒−8
𝑦−𝛼𝑇
𝜆𝑇

:
𝛽𝑇

< − 𝐶j𝑒
−71+𝛼𝑆𝜃𝑆

(𝑥−𝜆𝑆)<

−1
𝛼𝑆

k71 − 𝑒−8
𝑦−𝛼𝑇
𝜆𝑇

:
𝛽𝑇

<,              (59) 

and the multi-regression model is given by 

𝑀𝐹𝑥𝑦 = 𝐹∗(𝑋, 𝑌) = 𝐴∗𝐹(𝑋) + 𝐵∗𝐹(𝑌) − 𝐶∗𝐹(𝑋)𝐹(𝑌),                                                                                                    (60) 

where	𝐹∗(𝑋, 𝑌),	𝐴∗, 𝐵∗ and 𝐶∗ are the estimated values of 𝐹(𝑋, 𝑌),	𝐴, 𝐵 and 𝐶, respectively. The constants		𝐴∗, 𝐵∗ and 𝐶∗ 
are estimated from the following determinant 

l
l

𝐹∗(𝑋, 𝑌) 																𝐹(𝑋)																 𝐹(𝑌) 																−𝐹(𝑋)𝐹(𝑌)
∑ 𝐹∗(𝑋L, 𝑌L)M
L\) 								 ∑ 𝐹(𝑋L)M

L\) 								 ∑ 𝐹(𝑌L)M
L\) 							−∑ 𝐹(𝑋L)M

L\) 𝐹(𝑌L)

∑ 𝐹(𝑋L)𝐹∗(𝑋L, 𝑌L)M
L\) ∑ O𝐹(𝑋L)P

6M
L\) ∑ 𝐹(𝑋L)M

L\) 𝐹(𝑌L) −∑ O𝐹(𝑋L)P
6M

L\) 𝐹(𝑌L)
∑ 𝐹(𝑌L)𝐹∗(𝑋L, 𝑌L)M
L\) ∑ 𝐹(𝑋L)M

L\) 𝐹(𝑌L) ∑ O𝐹(𝑌L)P
6M

L\) −∑ 𝐹(𝑋L)O𝐹(𝑌L)P
6M

L\)

l
l = 0.                                         (61) 

Finally, Mann-Whitney test and homogeneity test of both logarithmic model and multi-regression model of the 𝐹(𝑋, 𝑌) 
were applied. 

5   Maximum Likelihood Estimation (MLE) 

This section presented the estimation method (MLE) for the distributions GEV and W-3P.       

The parameters estimation of GEV and Weibull models are derived by using the method of MLE. Let 
𝑋1, 𝑋2, 𝑋3, ⋯ , 𝑋𝑛		and 𝑌1, 𝑌2, 𝑌3, ⋯ , 𝑌𝑛	 be a random samples from GEV(𝑥;	𝛼𝑆, 𝜃𝑆, 𝜆𝑆)	and WO𝑦; 𝛽𝑇, 𝜆𝑇, 𝛼𝑇P, 
respectively. The likelihood functions are defined respectively as 

𝐿(𝑥;	𝛼*, 𝜃*, 𝜆*) =Õ𝑓/01(𝑥¢;	𝛼*, 𝜃*, 𝜆*)
k

¢£=

 

																													=Õ
1
𝜃*
�1 +

𝛼*
𝜃*
(𝑥¢ − 𝜆*)�

;[=> F
?@
^

𝑒
;<=>?@A@

(B¹;C@)D

EF
?@

.
k

¢£=

 

Thus, the log-likelihood function is 

ℓ = −𝑛 log 𝜃d − ∑ 781 + )
u@
: log(𝑧L) + (𝑧L)

EF
?@< ,M

L\)                                                                                                         (62) 

where 𝜀 = 		 (𝛼*, 𝜃*, 𝜆*), 	𝛼* ≠ 0 and 	𝑧𝑖 = 71 +
𝛼𝑆
𝜃𝑆
(𝑥𝑖 − 𝜆𝑆)<. 
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The following equations are formed by taking the derivatives of the previous equation with respect to the three parameters 
and equating it to zero 
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Thus, the log-likelihood function is 

ℓ = ∑ [log(𝛽X) − 𝛽X log(𝜆X) + (𝛽X − 1) log(𝑦¢ − 𝛼X) − m
Ó¹;Ú]
C]

s
Ö]
^k

¢£= .                                                                          (66) 

The following equations are formed by taking the derivatives of the previous equation with respect to the three parameters 
and equating it to zero 

vℓ
v��

= ∑ F )�� + log
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��
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Multiple nonlinear equations were solved numerically to obtain the estimation of the parameters	𝛼𝑆, 𝜃𝑆, 	𝜆𝑆, 𝛽𝑇, 𝜆𝑇		and	𝛼𝑇. 
The value 𝐴2	of Anderson-Darling (A-D) test was applied to test the fitting of the datasets with GEV and W-3P 
distributions. 

𝐴6 = −∑ O(2𝑖 − 1)Oln 𝐹�(𝑥L) + lnO1 − 𝐹�(𝑥My)1L)PP 𝑛⁄ P − 𝑛M
L\) .                                                                               (70) 

The adjusted AD test statistic of GEV and W-3P distributions is given by 

𝐴∗ = 𝐴6 81 + �.�
M
:.                                                                                                                                                                (71) 
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6   Results and Discussion 

In this section, we presented all numerical results and their discussion.  

Various methods and methodologies are applied for modeling the daily global solar radiation dataset. El Genidy [32] 
employed a statistical model along with the GEV distribution. The closest probability distribution was determined using 
nonlinear regression and multiple nonlinear regression. The GEV distribution parameters were validated using methods like 
the moment's technique and the K-S test. The distribution of solar radiation was estimated using the (Quartiles-Moments) 
approach. EGMD was presented for estimating solar energy. Also, forecasting the monthly solar energy average in 
Queensland-Australia utilizing percentile root estimation and Markov transition probability matrices were studied by [33, 
34]. 
 
This study deals with estimate the joint distribution function (EFXY) of S and T combined with Markov property. MLE has 
utilized to estimate the parameters of both GEV distribution and W-3P distribution with S and T, respectively. Logarithmic 
(LFXY) model and the multi-regression (MFXY) model have created for the 𝐹(𝑋, 𝑌) and comparing them with EFXY. 
Evaluate the performance of the proposed distributions and models using the Goodness-of-Fit tests. This is conducted with 
the least error rate.  
 
Tables (1-4) are listed the observed outcomes and illustrate the descriptive statistics for the datasets of S and T during 
2015-2016 in Queensland – Australia. The results demonstrate the precision of estimation methodologies and indicate the 
efficiency of MLEs in estimating parameters.   

Table 1: Descriptive statistics for the datasets of S and T during 2015(2016) in Queensland, Australia.  

Statistics S  T  Statistics S  T  

Average 18.3(16.337) 22.99(22.7) Skewness -0.004(0.257) -0.115(-0.116) 

Variance 43.399(34.876) 25.818(28.991) Kurtosis -0.57(-0.344) -0.727(-0.604) 

StDeva 6.588(5.906) 5.08(5.384) Q1 13.2(12.4) 18.7(18.4) 

Min 2.4(3.1) 8(8.9) Q2 18.1(15.6) 23.3(23.2) 

Max 32.1(31.3) 34(36) Q3 23.6(20.1) 27.3(26.9) 

Mode 17(14.6) 18.1(26.7) Q4 32.1(31.3) 34(36) 

Median 18.1(15.6) 23.3(23.2) AveDevb 5.43(4.714) 

 

 

4.29(4.57) 

 

 
a. StDev refers to Standard Deviation. 
b. AveDev stands for Average Deviation. 

Table 2: Frequencies and probabilities of difference cases of S and T during 2015-2016. 

S f PS T f PT 

Decreasing 

(X−) 
147 PS(X−) = 147/274 

Decreasing 

(Y−) 
119 PT(Y−) = 119/274 

Unchangeable 

(X0) 
3 PS(X0) = 3/274 

Unchangeable 

(Y0) 
2 PT(Y0) = 2/274 

Increasing 

(X+) 
124 PS(X+) = 124/274 

Increasing 

(Y+) 
153 PT(Y+) = 153/274 
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Table 3: Some statistics of the absolute difference-values (AD) of S and T in 2015-2016. 
Statistics ADS

 
ADT 

Average 4.515 3.211 

Variance Var(DS) = 18.73 Var(DT) = 6.737 

 
Table 4: MLEs of parameters and Goodness-of-Fit measures of S and T. 

Model MLEs K-S A* Chi-Squared Pearson Correlation 

S (GEV) 𝛼𝑆= -0.26493 
𝜃𝑆= 6.5895 
𝜆𝑆= 15.899 

 

0.03743 0.57116 15.113  
 
 

0.967 

T (W(3P)) 𝛽𝑇= 4.072 
𝜆𝑇	= 20.036 
	𝛼𝑇= 4.8369 

0.05756 1.594 21.864  

According to Tables (5-8), the functions of both GEV distribution and the logarithm of S data, functions of both W-3P 
distribution and the logarithm of T data, comparison between the estimated theoretical model and logarithmic regression 
model of S and T datasets, and comparison between EFxy and LFxy are performed. Furthermore, the logarithmic 
regression equation LFX for 𝐹(𝑥) over ln(𝑥)	is presented in Figure 3. Also, the logarithmic regression equation LFY for 
𝐹(𝑦) over ln(𝑦)	is displayed in Figure 4. 

Table 5: Functions of both GEV distribution and logarithm of S data. 

N x F(x) 
Actual ln x ln2 x ln x ∗ F(x) 

1 2.4 0.005875 0.875469 0.766446 0.005144 

2 2.9 0.00753 1.064711 1.133609 0.008017 

3 3.0 0.007904 1.098612 1.206949 0.008684 

4 3.6 0.010499 1.280934 1.640792 0.013449 

5 3.9 0.012044 1.360977 1.852257 0.016392 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

359 31.6 0.977115 3.453157 11.92429 3.374132 

360 31.8 0.978923 3.459466 11.96791 3.386552 

361 31.9 0.979787 3.462606 11.98964 3.392618 

362 32.0 0.980626 3.465736 12.01133 3.39859 

363 32.1 0.981439 3.468856 12.03296 3.40447 

Sum  182.5516 1031.188 2984.177 558.8398 

=SD =TD
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The logarithmic regression equation for 𝐹(𝑥) over ln(𝑥)	can be obtained from Eq. (56) as follow  

�
𝐹(𝑥) ln(𝑥) 1

182.5516 1031.188 363
558.8398 2984.177 1031.188

� = 0	 

then, we get that 𝐹(𝑥) = 0.608	 ln(𝑥) − 1.217. Thus,	𝜑= = 0.608 and	𝜑2 = 1.217. Also, from Eqs. (57) and (58) we 
obtain that  𝑅2 = 0.999894, 	𝑅𝑎𝑑𝑗.2 = 0.99979 and the coefficient of variation (CV) = 35.9988%.  

 
Fig. 3: Illustrate the plot of the logarithmic regression equation LFX for 	𝐹(𝑥) over ln(𝑥). 

Table 6: Functions of both W-3P distribution and logarithm of T data. 

N y F(y) 
Actual ln y ln2 y ln y ∗ F(y) 

1 8.0 0.000544 2.079442 4.324077 0.001131 

2 11.2 0.009323 2.415914 5.836639 0.022522 

3 12.3 0.017769 2.509599 6.298088 0.044593 

4 12.4 0.018749 2.517696 6.338796 0.047205 

5 12.6 0.02083 2.533697 6.41962 0.052776 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

359 33.3 0.984655 3.505557 12.28893 3.451766 

360 33.5 0.986401 3.511545 12.33095 3.463794 

361 33.7 0.98798 3.517498 12.37279 3.475219 

362 34.0 0.990062 3.526361 12.43522 3.491314 

363 34.0 0.990062 3.526361 12.43522 3.491314 

Sum  181.5427 1128.374 3527.736 589.2964 
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Further, Pearson correlation for the daily solar radiation (x) and the daily maximum temperature (y) is 0.995. Similarly, the 
logarithmic regression equation for 𝐹(𝑦) over ln(𝑦)	can be obtained from Eq. (56) as follow  

�
𝐹(𝑦) ln(𝑦) 1

181.5427 1128.374 363
589.2964 3527.736 1128.374

� = 0	 

then, we get that 𝐹(𝑦) = 1.235	 ln(𝑦) − 3.338. Thus, 𝜔1 = 1.235 and	𝜔2 = 3.338. Also, from Eqs. (57) and (58) we 
obtain that R2= 𝑅𝑎𝑑𝑗.2 =0.999914 and the coefficient of variation (CV) = 22.104%. 

 
Fig. 4: Illustrate the plot of the logarithmic regression equation LFY for 𝐹(𝑦) over	ln(𝑦). 

Table 7: Comparison between the estimated theoretical model and the logarithmic regression model of S and T. 

EFX LFX EFY LFY 

0.602562 0.604405 0.61914 0.622402 

0.608097 0.607438 0.634145 0.632362 

0.608097 0.607438 0.634145 0.632362 

0.613608 0.610455 0.634145 0.632362 

0.619095 0.613457 0.634145 0.632362 

⋮ ⋮ ⋮ ⋮ 

⋮ ⋮ ⋮ ⋮ 

0.967575 0.864952 0.979476 0.972679 

0.971022 0.870864 0.980611 0.976439 

0.97211 0.872822 0.982729 0.983924 

0.973168 0.874774 0.984655 0.991363 

0.976171 0.880592 0.986401 0.998759 
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Table 8: Comparison between EFxy and LFxy. 

EFxy LFxy 
0.623383 0.551929 

0.638147 0.560509 

0.638147 0.560509 

0.638356 0.560623 

0.638564 0.560737 

⋮ ⋮ 

⋮ ⋮ 

0.986706 0.859509 

0.987938 0.862928 

0.990034 0.869364 

0.991942 0.875761 

0.993749 0.882267 

Figure 5 illustrates the estimation of 𝐹(𝑋, 𝑌)	for each of the estimated theoretical model and logarithmic regression model. 
In addition, there is a positive relation between solar radiation and maximum temperature. Moreover, there is a 
convergence between the two models in the shape and location of the diagram for a specific values only but do not cover all 
data values. 

                    
Fig. 5: Comparison 𝐹(𝑋, 𝑌) between (a) EFxy and (b) LFxy. 

By using Mann-Whitney test and homogeneity test of EFxy and (LFxy, MFxy), respectively. We show that the P-value of 
the comparison between EFxy and LFxy of the logarithmic regression model is equal to zero; consequently EFxy and LFxy 
are not equivalent. On the other hand, the P-value of the comparison between EFxy and MFxy of the multi-regression 
model is equal to 0.911 ≥ 0.05, then EFxy and MFxy are equivalent and homogeneous as shown in Tables (9-11). 
Therefore, the multi-regression model is fitting to the datasets of S and T in Queensland during 2015-2016. 
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Table 9: Comparison between EFxy, LFxy and MFxy. 

Estimation model (EFxy) 
LFxy MFxy 

Estimates P-value Estimates P-value 

A = 0.0379103 𝐴=0.0379103 0.0 A*= 0.038 0.911 

B = 0.97 𝐵==0.85  B*= 0.970  

C = 0.00007 𝐶=0.00007  C*= 7.000E-5  

Such that EFxy refers to the estimate of the joint distribution function 𝐹(𝑋, 𝑌)	of the theoretical model and LFxy refers to 
the estimate of 𝐹(𝑋, 𝑌) in logarithmic regression model and MFxy refers to the estimate of 𝐹(𝑋, 𝑌) in the multi-regression 
model.  

From Eqs. (59) and (60), then the estimation model is EFxy = (0.0379103)	𝐹(𝑋) + (0.97) 𝐹(𝑌) – (0.00007)	𝐹(𝑋)𝐹(𝑌) and 
the multi-regression model is MFxy= 𝐹∗(𝑋, 𝑌)= (0.38) 𝐹(𝑋) + (0.970) 𝐹(𝑌)– (0.00007) 𝐹(𝑋)𝐹(𝑌), respectively.  

Table 10: ANOVA of the estimated theoretical model. 

Source Sum of Squares df Mean Squares 

Regression 125.612 3 41.871 

Residual 0.000 360 0.000 

Uncorrected Total 125.612 363  

Corrected Total 33.423 362  

Where 𝑅2	for the estimated theoretical model = 1. 

Table 11: Homogeneity Test of EFxy and MFxy. 
Var of EFxy Var of MFxy F-Max Test 
0.092327485 0.0923433 0.999828734 

Computed F-Max = Var of EFxy / Var of MFxy = 0.999828734≈ 1, then EFxy and MFxy are Homogeneity. 

Finally, estimation of the theoretical model allows us to estimate the value of the joint distribution function (EFXY) by 
knowing both X and Y while (MFXY) enables us to estimate the value of the joint distribution function with high accuracy 
by knowing the values of both 𝐹(𝑋)and 𝐹(𝑌) since EFXY and MFXY are equivalent and homogeneous if 𝐹(𝑋)and 𝐹(𝑌) are 
known. On the other hand, the logarithmic regression model (LFXY) was found to be non-equivalently with both EFXY and 
MFXY and inaccurate and did not cover all the range of the variables X and Y, so exclude its use in predicting of the joint 
distribution function. 

7 Conclusions 

Many researchers need easier-to-use and more accurate statistical methods to predict the climate changes occurring in many 
regions of the world.  Therefore, we have estimated O𝐹(𝑋, 𝑌)P	alongside the Markov property (EFXY). The method of MLE 
has utilized for determining the unknown parameters of the GEV distribution and W-3P distribution for both S and T, 
respectively. In addition, datasets of S and T in Queensland, Australia during 2015-2016 were analyzed to obtain the fitting 
distributions the climate change. Logarithmic (LFXY) model and the multi-regression (MFXY) model are constructed for 
the	𝐹(𝑋, 𝑌)	to validate the theoretical model estimate. Comparing the results of EFXY with both LFXY and MFXY, the MFXY 
model offers a better modeling to the data in which EFXY and MFXY are equivalent, homogeneous and including all the 
data.  
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study's results are listed in the complementary information file named [IDCJAC0016_040395_2016_Solar 
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