19 research outputs found

    Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co-Pt films for methanol oxidation catalysis in alkaline media

    Get PDF
    Pt-based direct methanol fuel cells are attracting increasing interest as environmentally-friendly alternative energy sources. However, the high price of Pt and the difficulty to prepare favourable morphologies for catalysis (e.g., mesoporous materials) is hampering their development into feasible products. Here, we demonstrate a novel approach to efficiently grow mesoporous films of Pt-poor alloys (Co3Pt and CoPt3), based on electrodeposition in ionic liquid-in-water (IL/W) microemulsions. The high proportion of the electrolytic aqueous solution in the IL/W microemulsion favors a significant deposition rate, while the presence of IL drops induces the formation of highly mesoporous films. The mesoporous alloys, with pores in the 8-11 nm range, exhibit excellent durability in acidic and alkaline aggressive media, maintaining their peculiar morphology. The structures are very efficient for the catalysis of methanol electro-oxidation in alkaline media, with minimal poisoning of the catalysts. These results pave the way to develop simple, versatile environmentally friendly fuel cells catalysts, to commercialize new viable ecological alternative energy sources

    Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles

    Get PDF
    Although cubic rock salt‐CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende‐CoO phase is antiferromagnetic with a 3rd type structure in a face‐centered cubic lattice and a Néel temperature of TN (zinc‐blende) ≈225 K. Wurtzite‐CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c‐axis but an incommensurate order along the y‐axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic‐like behavior even at room temperature

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.-- et al.The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides.This work was supported by the 2014-SGR-1015 and 2009-SGR-35 projects of the Generalitat de Catalunya, by the MAT2010-20616-C02, MAT2011-27380-C02-01, MAT2010-16407, MAT2013-48628-R and CSD2009-00013 projects of the Spanish Ministerio de Economía y Competitividad (MINECO), the ONDA and COEFNANO projects (no. FP7-PEOPLE-2009-IRSES-247518 and no. FP7-PEOPLE-2012-IRSES-318901) of the European Union, the Russian grants RFBR 13-02-00121, 13-02-12429 and RG 14.B25.31.0025, the Brazilian grants CNPq-304368/2010-5 and FAPEMIG-PPM 00319-11, the Argentine grants PIP 1333 (CONICET) and SECTyP 06/C404 (Univ. Nac. de Cuyo) and the Swedish Research Council (VR). Research at NCSR “D” was supported by the HSF-EU program ARISTEIA, grant COMANA/22. GSA was partially supported by the Knut and Alice Wallenberg Foundation (Project: 3DEM-NATUR). I.V.G. thanks the Generalitat de Catalunya for his sabbatical fellowship (2010 PIV 00096). M.D.B. was partially supported by an ICREA Academia award. M.E. acknowledges the Spanish Ministry of Science and Innovation through the Juan de la Cierva Program. A. G. Roca would like to thank Generalitat de Catalunya for financial support under the Beatriu de Pinós fellowship program (2011 BP_B 00209). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, grant SEV-2013-0295).Peer Reviewe

    Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of FeO/MnO core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the FeO and MnO magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the MnO shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the FeO cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials

    Elucidating individual magnetic contributions in bi-magnetic Fe3O4/Mn3O4 Core/Shell nanoparticles by polarized powder neutron diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials.I.V.G. acknowledges financial support from the Russian Foundation for Basic Research under Grant No 20-02-00109. A.G.R. and J.N. acknowledge financial support from the grants PID2019-106229RB-I0 funded by MCIN/AEI/10.13039/50110001103 and 2021-SGR-00651 from Generalitat de Catalunya. I.K. and A.G. acknowledge the European Union's H2020 reserach and innovation program, Grant agreement No 871072. A.G.R. acknowledges financial support from RYC2019-027449-I funded by MCIN/AEI/10.13039/501100011033. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the CEX2021–001214–S grant funded by MCIN/AEI/10.13039/501100011033. M.E. acknowledges the grants RYC2018-024396-I and PID2019-106165GB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future.” A.L.O. acknowledges financial support from the grants PID2021-122613OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and PJUPNA2020 from Universidad Pública de Navarra

    Strongly exchange coupled inverse ferrimagnetic soft/hard, Mn(x)Fe(3-x)O(4)/Fe(x)Mn(3-x)O(4), core/shell heterostructured nanoparticles

    Get PDF
    Inverted soft/hard, in contrast to conventional hard/soft, bi-magnetic core/shell nanoparticles of Mn xFe 3-xO 4/Fe xMn 3-xO 4 with two different core sizes (7.5 and 11.5 nm) and fixed shell thickness (∼0.6 nm) have been synthesized. The structural characterization suggests that the particles have an interface with a graded composition. The magnetic characterization confirms the inverted soft/hard structure and evidences a strong exchange coupling between the core and the shell. Moreover, larger soft core sizes exhibit smaller coercivities and loop shifts, but larger blocking temperatures, as expected from spring-magnet or graded anisotropy structures. The results indicate that, similar to thin film systems, the magnetic properties of soft/hard core/shell nanoparticles can be fine tuned to match specific application

    Size-Dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles

    Get PDF
    The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (γ-Mn2O3 or Mn3O4) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly γ-Mn2O3 shell, larger ones have increasing amounts of Mn3O4. A considerable enhancement of the Néel temperature, TN, and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains

    Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles

    Get PDF
    The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles

    Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3-xO4 nanolayers

    Get PDF
    The controlled filling of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3-xO4 nanolayers is presented as a proof-of-concept toward the integration of nanosized units in highly ordered, heterostructured 3D architectures. Antiferromagnetic (AFM) Co3O 4 mesostructures are obtained as negative replicas of KIT-6 silica templates, which are subsequently coated with ferrimagnetic (FiM) Fe xCo3-xO4 nanolayers. The tuneable magnetic properties, with a large exchange bias and coercivity, arising from the FiM/AFM interface coupling, confirm the microstructure of this novel two-phase core-shell mesoporous material. The present work demonstrates that ordered functional mesoporous 3D-materials can be successfully infiltrated with other compounds exhibiting additional functionalities yielding highly tuneable, versatile, non-siliceous based nanocomposites

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides
    corecore