159 research outputs found

    The digital mirror Langmuir probe: Field programmable gate array implementation of real-time Langmuir probe biasing

    Get PDF
    High bandwidth, high spatial resolution measurements of electron temperature, density, and plasma potential are valuable for resolving turbulence in the boundary plasma of tokamaks. While conventional Langmuir probes can provide such measurements, either their temporal or spatial resolution is limited: the former by the sweep rate necessary for obtaining I-V characteristics and the latter by the need to use multiple electrodes, as is the case in triple and double probe configurations. The Mirror Langmuir Probe (MLP) bias technique overcomes these limitations by rapidly switching the voltage on a single electrode cycling between three bias states, each dynamically optimized for the local plasma conditions. The MLP system on Alcator C-Mod used analog circuitry to perform this function, measuring Te, VF, and Isat at 1.1 MSPS. Recently, a new prototype digital MLP controller has been implemented on a Red Pitaya Field Programmable Gate Array (FPGA) board which reproduces the functionality of the original controller and performs all data acquisition. There is also the potential to provide the plasma parameters externally for use with feedback control systems. The use of FPGA technology means the system is readily customizable at a fraction of the development time and implementation cost. A second Red Pitaya was used to test the MLP by simulating the current response of a physical probe using C-Mod experimental measurements. This project is available as a git repository to facilitate extensibility (e.g., real-time control outputs and more voltage states) and scalability through collaboration

    Application of Headspace Solid-Phase Microextraction for Determination of Chloro-Organic Compounds in Sewage Samples

    Get PDF
    Solid phase microextraction (SPME) has been optimized and applied to the determination of the volatile halogenated compounds (VHCs) and semi-volatile halogenated compounds (SVHCs). Three types of SPME fiber coated with different stationary phases (PDMS–100 μm, CAR/PDMS-75 μm, PDMS/DVB–65 μm) were used to examine their extraction efficiencies for the compounds tested. Experimental parameters such as the selection of SPME coatings, extraction time, and addition of salts were studied. The carboxen-polydimethylsiloxane (CAR/PDMS) fiber appears to be the most suitable for the determination of VHCs. Analytical parameters such as linearity, limit of detection, and precision were also evaluated. Application of ECD detector for the determination of VHCs and SVHCs allows their determination on the low concentration level, ranging from 0.005 to 0.8 μg/L−1. The HS-SPME-GC/ECD procedure gave good analytical precision expressed as relative standard deviation (RSD) (ranged from 5.08% to 8.07%) for a concentration level of 5 μg/L−1 and good linearity (r2 > 0.98) in a wide calibration range. The applied HS-SPME-GC/ECD method was found to be a quick and effective technique for the determination of microtrace amounts of volatile and semi-volatile halogenated compounds in samples containing high amounts of various organic compounds

    The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak

    Get PDF
    The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated χeat the edge is in the range of experimental errors of χefffrom the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies

    Results of screening in early and advanced thoracic malignancies in the EORTC pan-European SPECTAlung platform.

    Get PDF
    Access to a comprehensive molecular alteration screening is patchy in Europe and quality of the molecular analysis varies. SPECTAlung was created in 2015 as a pan-European screening platform for patients with thoracic malignancies. Here we report the results of almost 4 years of prospective molecular screening of patients with thoracic malignancies, in terms of quality of the program and molecular alterations identified. Patients with thoracic malignancies at any stage of disease were recruited in SPECTAlung, from June 2015 to May 2019, in 7 different countries. Molecular tumour boards were organised monthly to discuss patients' molecular and clinical profile and possible biomarker-driven treatments, including clinical trial options. FFPE material was collected and analysed for 576 patients with diagnosis of pleural, lung, or thymic malignancies. Ultimately, 539 patients were eligible (93.6%) and 528 patients were assessable (91.7%). The turn-around time for report generation and molecular tumour board was 214 days (median). Targetable molecular alterations were observed in almost 20% of cases, but treatment adaptation was low (3% of patients). SPECTAlung showed the feasibility of a pan-European screening platform. One fifth of the patients had a targetable molecular alteration. Some operational issues were discovered and adapted to improve efficiency

    Radiative heat exhaust in Alcator C-Mod I-mode plasmas

    Get PDF
    In order to more completely demonstrate the I-mode regime as a compelling fusion reactor operating scenario, the first dedicated attempts at I-mode radiative heat exhaust and detachment were carried out on Alcator C-Mod. Results conclusively show that within the parameter space explored, an I/L back-transition is triggered prior to meaningful reductions in parallel heat flux, q||, target temperature, Te;tar, and target pressure, pe;tar, at the outer divertor. The exact mechanism for the I/L trigger remains uncertain, but a multi-diagnostic investigation suggests the pedestal regulation physics is impacted promptly by small amounts of N2 seeded into the private flux region. The time delay between when N2 contacts the plasma and the I/L transition is triggered varied from 30-120 ms, approximately 0.7-3 x tE, and the delay varied inversely with I-mode pedestal-top pressure, pe;95. Power and nitrogen influx scans indicate that the I/L transitions are not linked to excessive bulk-plasma impurity radiation. It is also shown that in the subsequent L-mode following nitrogen seeding, q|| and Te;tar can be reduced by factors of ~10. The I/L transition and L-mode exhaust results using N2 are compared to similar attempts using Ne where such q|| and Te;tar reductions in L-mode are limited to factors of 2-3. Implications for the I-mode regime are discussed, including needs for follow-up experiments on other facilities

    Memory in low-grade glioma patients treated with radiotherapy or temozolomide: a correlative analysis of EORTC study 22033-26033.

    Get PDF
    EORTC study 22033-26033 showed no difference in progression-free survival between high-risk low-grade glioma receiving either radiotherapy (RT) or temozolomide (TMZ) chemotherapy alone as primary treatment. Considering the potential long-term deleterious impact of RT on memory functioning, this study aims to determine whether TMZ is associated with less impaired memory functioning. Using the Visual Verbal Learning Test (VVLT), memory functioning was evaluated at baseline and subsequently every 6 months. Minimal compliance for statistical analyses was set at 60%. Conventional indices of memory performance (VVLT Immediate Recall, Total Recall, Learning Capacity, and Delayed Recall) were used as outcome measures. Using a mixed linear model, memory functioning was compared between treatment arms and over time. Neuropsychological assessment was performed in 98 patients (53 RT, 46 TMZ). At 12 months, compliance had dropped to 66%, restricting analyses to baseline, 6 months, and 12 months. At baseline, patients in either treatment arm did not differ in memory functioning, sex, age, or educational level. Over time, patients in both arms showed improvement in Immediate Recall (P = 0.017) and total number of words recalled (Total Recall; P < 0.001, albeit with delayed improvement in RT patients (group by time; P = 0.011). Memory functioning was not associated with RT gross, clinical, or planned target volumes. In patients with high-risk low-grade glioma there is no indication that in the first year after treatment, RT has a deleterious effect on memory function compared with TMZ chemotherapy

    Performance assessment of long-legged tightly-baffled divertor geometries in the ARC reactor concept

    Get PDF
    Extremely intense power exhaust channels are projected for tokamak-based fusion power reactors; a means to handle them remains to be demonstrated. Advanced divertor configurations have been proposed as potential solutions. Recent modelling of tightly baffled, long-legged divertor geometries for the divertor test tokamak concept, ADX, has shown that these concepts may access passively stable, fully detached regimes over a broad range of parameters. The question remains as to how such divertors may perform in a reactor setting. To explore this, numerical simulations are performed with UEDGE for the longlegged divertor geometry proposed for the ARC pilot plant conceptual design-a device with projected heat flux power width (λq∥) of 0.4 mm and power exhaust of 93 MW-first for a simplified Super-X divertor configuration (SXD) and then for the actual X-point target divertor (XPTD) being proposed. It is found that the SXD, combined with 0.5% fixed-fraction neon impurity concentration, can produce passively stable, detached divertor regimes for power exhausts in the range of 80-108 MW-fully accommodating ARC's power exhaust. The XPTD configuration is found to reduce the strike-point temperature by a factor of ∼10 compared to the SXD for small separations (∼1.4λ [subscript]q [subcript]∥) between main and divertor X-point magnetic flux surfaces. Even greater potential reductions are identified for reducing separations to ∼1λ [subscript]q [subscript]∥ or less. The power handling response is found to be insensitive to the level of cross-field convective or diffusive transport assumed in the divertor leg. By raising the separatrix density by a factor of 1.5, stable fully detached divertor solutions are obtained that fully accommodate the ARC exhaust power without impurity seeding. To our knowledge, this is the first time an impurity-free divertor power handling scenario has been obtained in edge modelling for a tokamak fusion power reactor with λ [subscript]q [subcript]∥ of 0.4 mm. ©2019US DoE cooperative agreement DE-SC0014264EPSRC Fusion Centre for Doctoral Training (Training grant number EP/LO1663X/1)DoE Contract DE-AC52-07NA2734
    corecore